
Developing Distributed Computing Solutions
Combining Grid Computing and Public Computing

M.Sc. Thesis

Christian Ulrik Søttrup Jakob Gregor Pedersen

Department of Computer Science
University of Copenhagen

1st March 2005

Abstract

As modern research relies more and more on computers, computer cycles are becoming a
scarce resource for research projects, as well as a large part of the cost. Some projects try to
solve this problem by relying on computer resources donated by the public. The drawback to
this approach is that the public resources are stochastic in nature. It is therefore not possible
to predict when a study will finish.
Our goal is to create a resource that will supply a scientific research project with reliable
compute power using computers donated by the public. To this end we will use BOINC,
a newly created open platform that tries to lower the cost of computational resources for
research by using donated cycles. We propose to build a bridge between this platform and
Grid computing to solve the problem of reliability. Grid computing is a platform that seeks
to solve the problem of scarcity. It does this by allowing researchers around the world to buy,
sell, or share computational resources. We show that using a mix of these resources it should
be possible to supply an inexpensive resource with guarantees on the quality of service. We
also propose a design for integrating this resource into the Grid, thus making it easier to use.

I

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Problem Description and Approach . 2
1.3 Challenges . 2
1.4 Contributions . 3
1.5 Sources and Acknowledgments . 3
1.6 Structure of the Report . 4

2 Public Resource Computing 5

2.1 The Concept . 5
2.2 BOINC . 6

2.2.1 The Client . 7
2.2.2 User Security . 8
2.2.3 Project Security . 9
2.2.4 The BOINC Server . 10
2.2.5 BOINC Applications . 12
2.2.6 Versions . 13
2.2.7 Summary . 14

2.3 Condor . 14
2.3.1 Features . 15
2.3.2 Matchmaking . 17
2.3.3 Scheduling . 19
2.3.4 Condor-G . 19
2.3.5 Condor vs. BOINC . 21

2.4 Other PRC Platforms . 22
2.4.1 Frontier . 22
2.4.2 DCGrid . 23
2.4.3 Grid MP . 23
2.4.4 OfficeGRID . 24

2.5 Summary . 24

3 LHC@home 25

3.1 An Introduction to CERN . 25
3.1.1 Computing Needs at CERN . 25

3.2 SixTrack . 26
3.3 CPSS . 27

II

CONTENTS

3.4 CPSS vs BOINC . 27
3.5 Deploying BOINC at CERN . 28

3.5.1 The Test Project . 28
3.5.2 Server Requirements . 28
3.5.3 Server Setup . 31
3.5.4 Creating a Secure Code Signing Method for LHC@home. 33
3.5.5 Porting SixTrack to BOINC . 34
3.5.6 The Screensaver . 36

3.6 Results from LHC@home . 37
3.6.1 Donated Platforms . 37
3.6.2 Keeping the Users Happy . 38
3.6.3 Failure Rate - the Dreaded Tail . 38
3.6.4 Benefits for SixTrack . 40

3.7 The Future of LHC@home . 40
3.8 Summary . 41

4 The Grid 42

4.1 The Concept . 42
4.2 The Globus Toolkit . 44

4.2.1 Grid Security Infrastructure . 44
4.2.2 GridFTP . 45
4.2.3 Replica Management . 45
4.2.4 Grid Resource Allocation and Management 46
4.2.5 Monitoring and Discovery Service . 46
4.2.6 Globus Toolkit 3 . 47

4.3 LHC Computing Grid . 47
4.3.1 The Workload Management System 48
4.3.2 The Data Management System . 49
4.3.3 The Information System . 50

4.4 Summary . 50

5 The BOINC-Grid Bridge 51

5.1 Creating a PRC System With Hard Guarantees 51
5.2 Bridging From a PRC Platform To a Grid . 52
5.3 The BOINC To LCG-2 Bridge . 53

5.3.1 Running BOINC Applications on LCG-2 53
5.3.2 The Bridge Daemon . 54
5.3.3 The Extended BOINC System . 55
5.3.4 QoS . 56
5.3.5 Queues . 59
5.3.6 Database Changes . 60
5.3.7 User Defined Settings . 61
5.3.8 Implementation . 62
5.3.9 Testing . 66
5.3.10 Security . 67
5.3.11 Limitations and Improvements . 67

5.4 Possible Benefits For BOINC And LCG-2 From the Bridge 68

III

CONTENTS

5.5 Features Missing In LCG-2 . 69
5.6 Summary . 70

6 The GRID-BOINC Bridge. 71

6.1 Grid Jobs on a PRC System . 71
6.2 Security . 71
6.3 The Ideal Bridge . 73
6.4 A BOINC bridge . 73

6.4.1 Running Generic Jobs on BOINC . 73
6.4.2 Security . 74

6.5 The Prototype . 75
6.5.1 Architecture of a Grid-BOINC Bridge 75
6.5.2 The GRAM Job Manager API . 75
6.5.3 Job Submission . 77

6.6 Future Areas of Interest . 78
6.7 Related Work . 79
6.8 Summary . 79

7 Conclusion 81

7.1 Future Work . 82

A Definitions 86

B LHC@home 89

B.1 Results and CPU-time . 89
B.2 Number of Hosts Divided by Operating System 89
B.3 Number of Users and Hosts Over Time . 90
B.4 Time to Finish a Study . 91
B.5 SixTrack Screenshot . 91

C BOINC-Grid Bridge Documentation 92

C.1 Installation Guide . 92
C.2 User Manual . 95

D Sourcecode 96

IV

List of Figures

2.1 The BOINC system. From [1]. 7
2.2 The Condor system using the standard universe. From [5]. 15
2.3 An example ClassAd, describing a provider. From [6]. 18
2.4 An example ClassAd, describing a job. From [6]. 18
2.5 Job-execution on Globus resources via Condor-G. From [7]. 20

3.1 Using the BOINC-Fortran API to call BOINC API functions from within a
Fortran application. 36

3.2 The time to finish a study. 39

4.1 The Workload Management System of LCG-2. Modified from [29]. 49

5.1 Job-execution on the modified BOINC platform, which includes the possibility
of submitting jobs to Grid resources. 56

5.2 Job-queues in the extended BOINC system, which now includes the bridge to
LCG-2. 59

5.3 The class diagram for the bridge. 63
5.4 Executing a BOINC job on a Grid WN. 64
5.5 A small test of the BOINC-Grid bridge. 66

B.1 The number of users and hosts donating to LHC@home 90

V

Chapter 1

Introduction

The purpose of this thesis is to study the possibility of creating a hybrid between two methods
of distributed computing, namely Grid computing and Public Resource Computing(PRC1). To
achieve this aim we first create a PRC project that is able to supply a significant computational
resource. We will then use this PRC project as a basis for creating bridges between these two
types of computing. These bridges should allow the Grid to make use of the resources supplied
by the public and also allow a PRC project to deliver some of the features normally found
only in Grid Computing.

1.1 Motivation

In September 2004 CERN2 celebrated its 50th anniversary. In connection with this, many
different events were planned to raise the public’s awareness of CERN’s work in particular
and natural science in general. The IT department at CERN was approached to develop a
public Computing Challenge that would illustrate distributed computing, and if possible make
connections to CERN’s work in the area of Grid computing, specifically the Large Hadron
Collider Computing Grid, or LCG. Another reason for studying the possibility of running a
PRC project at CERN, is the compute power that is needed once the new particle accelerator
is ready. The needed compute power is far greater than what CERN can hope to supply locally.
This is the reason why CERN, which is otherwise a physics research institution, is investing in
computer science, specifically Grid research. The recent appearance of BOINC3 as a general
platform for PRC provided an interesting opportunity in these respects. SETI@home4 had
already shown that not only are many people interested in donating their spare computer
power in the aid of science, but also that once they have done so they are more likely to get
interested in the science their machine is working on. The latest measurement of SETI@home’s
performance in 2000, put it at about 15 TeraFLOPS. This was faster than IBM’s ASCI White,
the fastest supercomputer at that time. The compute power available from a PRC project
could therefore be a significant resource for CERN.
One problem with PRC projects is that the performance they provide is not reliable. You
cannot be certain whether you will get any resources at all. Another problem is that the

1For further information on PRC, see section 2.
2Centre Européenne pour le Recherche Nucléaire. A nuclear research facility in Switzerland, see section 3.1
3BOINC is covered in section 2.2
4A PRC project searching for signs of extraterrestrial intelligence. Also the precursor to BOINC.

1

1.2. PROBLEM DESCRIPTION AND APPROACH

application often has to be tailored specifically to the PRC, making it time consuming to
start using a PRC resource. An interesting solution to this problem would be to create a Grid
PRC hybrid. It would allow ordinary Grid jobs to run under a PRC platform. It would also
be able to supply a quality of service by using a mix of PRC resources and Grid resources.

1.2 Problem Description and Approach

To summarize our goals are to:

• Create a PRC project that at the same time will be a part of CERN’s 50th anniversary
and be proof that the concept of PRC is a feasible computational resource for CERN
by supplying a significant increase in compute power for a CERN application.

• Design and implement a bridge from PRC to the Grid, to show that it is possible to
satisfy some form of quality of service requirements from a PRC resource.

• Discuss and design a bridge from the Grid to a PRC platform.

We aim to tackle these problems by setting up a PRC project running SixTrack, a CERN
application vital to the construction of experiments at CERN. SixTrack being an interesting
choice because it does not have enough computational power at its disposal to do all the
studies the physicists demand. We will use the BOINC framework to build the PRC project.
We will then use the experience, and the data we gather to design and implement a bridge
from BOINC to CERN’s Grid implementation: LCG-2. We aim to ameliorate the stochastic
nature of cycle-scavenged resources. Finally we will discuss the design of integrating BOINC
into the LCG-2.

1.3 Challenges

There are several challenges to be met when solving the problems outlined above. We will
discuss the main ones here.
First, there are only a handful of general platforms for doing PRC and most of these have
only become available recently. We will have to choose and familiarize ourselves with a PRC
platform, port an application to the PRC platform and run extensive tests on the port.
Extensive testing is important, because we need to attract a large user base to show whether
a PRC project is able to deliver an interesting amount of compute power.
Second, PRC and Grid computing are two very different approaches to distributed computing.
Combining the two will of course require familiarizing ourselves with the concept of a Grid
and with LCG-2 in particular.
To successfully build a bridge from BOINC to LCG-2 we will have to adapt the BOINC
system to be able to take advantage of the Grid resources. This is because adapting LCG-2
due to its massive scale is out of the question. We will also have to decide on a QoS metric
and create a way of honouring it. Lastly we have to test the bridge preferably in a production
scale environment to see the results of our efforts.
Concerning the bridge from the Grid to a PRC platform we have to come up with a way of
running the very generic jobs from the Grid on the non-generic resources of the PRC platform.
Since Grid resources are generally trusted whereas PRC resources are not, we have to figure
out how to deal with running jobs meant for trusted resources on non-trusted resources. After

2

1.4. CONTRIBUTIONS

solving these problems in general we have to solve them for the specific systems of LCG-2 and
BOINC. We also plan to implement a partial prototype of such a LCG-2 to BOINC system
to study the feasibility of the concept.

1.4 Contributions

The main contributions of this project are:

• We created a very popular PRC project, showing that the PRC concept can be a sig-
nificant computational resource for CERN. It outstripped the other resources available
to SixTrack by far. As a side benefit it also showed that running a PRC project can be
a great tool for public relations.

• Creating a bridge from BOINC to LCG-2. Unfortunately we cannot prove that this
bridge makes it possible to supply a quality of service for a PRC platform. Because the
LCG-2 resources that were at our disposal, only were best effort and therefore no better
than a cycle-scavenging scheme. However, initial tests show promise.

• Our discussion of the design of a Grid to BOINC bridge aims to be a helpful guide
to those wishing to implement such a bridge. We have also made the first steps in
integrating the BOINC server into LCG-2’s job submission system.

In addition we have helped mature the BOINC platform. Both by testing the framework as
well as supplying bug-fixes, documentation, and new features beyond those discussed above.

1.5 Sources and Acknowledgments

The LHC@home project became a large part of our work and our thesis. Because of the size
of the project many people besides the authors contributed to it in one way or another. In this
section we will introduce the people who helped us, and what role they played in the creation
of the LHC@home project. When we describe different parts of the LHC@home project, in
chapter 3, we will mention the appropriate person if that part was not made by us.
The project was led by Francois Grey, group leader of the IT Communications team at CERN
and the otherwise retired Ben Segal, formerly the manager of EDG WP25. Francois handled
the contacts to upper management and Ben the day to day supervision.
The project needed to run a relevant CERN application to be of use. The application that
was chosen was SixTrack, see section 3.2. The people who helped us understand and port this
application were Eric McIntosh, who does error analysis and optimization on the SixTrack
application, and Frank Schmidt, the creator of SixTrack.
Because of our other responsibilities we were unable to handle the daily server maintenance
on our own. A server administrator was therefore needed. The first was Karl Chen, a student
who had worked on BOINC at Berkeley. He helped us design and set up the needed servers
for the project building on his SETI@home experience, but had to return to his studies before
the project went public. The next two, replacing each other in rapid succession, were Kalle
Happonen and Markku Degerholm, both of them students from Helsinki Institute of Physics.
One of the prerequisites for a successful BOINC project is doing an interesting screensaver.

5A workgroup working on the Data Management architecture of the European Data Grid

3

1.6. STRUCTURE OF THE REPORT

Since this was outside the scope of this thesis, Jasenko Zivanov, a summer student from Basel
University, was hired to create this under our and Ben Segal’s supervision.
We would also like to thank David Anderson, the creator of BOINC. Although not directly a
member of the LHC@home team he was always very helpful in explaining the BOINC system
or helping us track down bugs in the BOINC software.
The second part of our thesis, designing bridges between Grid and BOINC, was done entirely
by us, but would not have been possible without the generous help of the LCG team, especially
Maarten Litmaath and David Smith. They were always willing to demonstrate the workings
of the LCG, whenever the documentation was insufficient or completely lacking, or discuss
issues on the design of the bridges between LCG-2 and BOINC.
We would also like to thank Ben Segal and Francois Grey, our supervisors at CERN, and
Jørgen Sværke Hansen, our adviser at DIKU, for guidance, comments and suggestions during
the project. Thanks to Steffen Lauritzen and Tabita Holrick for proofreading.
A final thanks to Dominique Dupraz for helping us with the french authorities, apartments
and any other tasks requiring the use of French.

1.6 Structure of the Report

We begin by describing the concept of PRC and introduce some of the different PRC systems
through time, in chapter 2. In chapter 3 we describe the specifics of our team’s work in
deploying the BOINC framework and the LHC@home application at CERN. In the following
chapter we introduce Grid computing particularly the LCG-2 platform. The authors’ design
of the bridges is treated in two separate chapters: Chapter 5 describes the bridge that allows
BOINC jobs to migrate to the Grid and chapter 6 describes the other direction.

4

Chapter 2

Public Resource Computing

In this chapter we describe the PRC model for distributed computing. Two PRC platforms will
be discussed in detail, namely BOINC and Condor. We compare their respective strengths and
weaknesses and, argue why BOINC is a better PRC platform. We also give a short description
of other PRC platforms including Frontier from Parabon, DCGrid from Entropia, Grid MP
from United Devices, and OfficeGRID from MESH-Technologies.

2.1 The Concept

PRC describes a computational model pioneered by the distributed.net project [11]. It is
also known under the names Internet Computing, Public Computing, and Meta Computing
among others. We will use the name Public Resource Computing(PRC) because we feel that
it best describes the model. The idea is to get anybody with an Internet connection and spare
compute power to donate CPU cycles on their computer. This leads to a very heterogeneous
distributed model, as the people donating their compute power range from grandmothers to
cluster administrators, so can the machinery range from x86 machines on an analog modem
to UNIX clusters connected with fibre optics. Both the performance and the hardware archi-
tecture can therefore differ a lot between the donating machines.
Using compute power that would otherwise go to waste is often called cycle-scavenging or
cycle-harvesting and there are also quite a few systems specializing in doing just this without
necessarily involving the public.
There are a number of technical differences between public resources and normal dedicated
resources that cause quite a few problems to be solved by PRC platforms. First of all as men-
tioned above some public resources are connected via modems making them only connected
at certain times, and even if an ADSL line for instance is used the actual computer may not
always be on. Therefore it cannot be assumed that public resources can always be reached
hence disconnected operation must be supported. Secondly public resources are usually pro-
tected by firewalls or are sitting behind NAT-enabled1 routers with the resources using local
IP addresses instead of global IP addresses. This means it cannot be assumed that public
resources accept incoming connections. Most PRC platforms solve these problems by having
one central queue of jobs, which gets pulled out by clients connecting to a central scheduler.
Pulling jobs instead of pushing them to clients solves the problem of clients not being con-
nected at all times and not accepting incoming connections. Because of these assumptions of

1Network Address Translation.

5

2.2. BOINC

connections to the clients and the pull model, there is usually no contact between the clients
and the scheduler during the computation leaving the scheduler with no idea of the computa-
tion’s progress if any. It also means that scheduling decisions can only be made when a client
connects to the central scheduler.
Another issue is trust. When a computation is being run on hardware within the submitter’s
control, the result of the computation can be trusted. When the computation is done on an
unknown stranger’s computer not within the submitter’s control it is uncertain whether the
result can be trusted or not. Trust also goes the other way around, the clients trust the project
not to destroy any of their data or their hardware for that matter. They also trust the project
not to go snooping around their computer for sensitive data such as passwords, credit card
numbers etc. To enhance the trust of the people donating cycles many PRC platforms employ
a technique called sandboxing on the clients computers. Sandboxing isolates a computation
from the rest of the computer thereby preventing it from damaging anything outside the
sandbox. Sandboxing is usually achieved by intercepting system calls, thus adding a layer
between the application and the operating system (OS), and deciding whether a given call is
safe to perform or not. It is obvious that such a feature will help increase the users’ trust in
a given system.
No one does anything without a reason, so the clients need a reason for donating their spare
compute power. This reason could be to help out science, help cure cancer, or any other
reason, but the bottom line is that projects need to motivate the clients. The most common
and successful way of motivating clients is the granting of credits. Credit is a measurement
of the work done by one or more clients and it can really motivate people because it brings
up the competitive spirit in people. Some PRC platforms also involve payments to the clients
for used compute power, but most do not.
The model lends itself very well to problems of an ”embarrassingly parallel” nature, but not
other types of parallel problems. This is because of the asymmetry in communication and
compute power among the donated machines. For the same reason problems that require a
fast response time are very ill-suited for this type of computing. On the other hand the sheer
throughput capability of a 100,000 machines is astonishing. As we see in section 3.1, many
of the computing tasks at CERN are ideally suited for PRC. One of the problems of PRC is
that absolutely no quality of service can be guaranteed. You have no idea when results will
return and you cannot be assured that your community will not suddenly start a boycott.
This problem and what can be done about it will be examined in chapter 5.

2.2 BOINC

Berkeley Open Interface for Network Computing (BOINC) is an open source middleware
platform for doing PRC. It is being developed by the team that made SETI@home lead by
David Anderson. Their reason for doing this is that at the moment they have 3-4 times more
compute power at their disposal than they can supply data for. SETI@home analyse data
from a radio telescope and this telescope supplies a fixed amount of data, so once enough
compute power to analyse the given amount of data has been used, excess compute power
goes unused. They are therefore interested in sharing their community with other scientific
projects, and to this end they have created BOINC. Like SETI@home users gain credit when
their computer does work for projects, these credits are then used to display leader boards
on web pages. The only use of the credits is to create a competitive spirit among the users.

6

2.2. BOINC

No payment for use of the computers is implemented.
BOINC consists of a client which is shared among all BOINC projects, and a project specific
server complex2 and application program(s). Figure 2.1 shows an overview of the BOINC
system, with which we will go into details in the next sections starting with the client. BOINC
uses the above mentioned scheme of having a central work queue, depicted as the BOINC
database in the figure, and of having clients connect to the scheduler. It might be a good idea
to keep an eye on figure 2.1 when reading the next sections to aid in the understanding of the
system.

Figure 2.1: The BOINC system. From [1].

2.2.1 The Client

A user who wants to donate his computer’s spare cycles to a BOINC project downloads and
installs the BOINC client, also known as the core client. This client can be found at the
website of every BOINC project and it is therefore usually downloaded from the first project
the user signs up for. After installation of the client software, the user visits a project website
and registers as a user. Shortly after having registered, the user receives an email with a
unique user id. This id together with the project’s URL is then entered by the user to sign
his BOINC client up for the specific project. This process is called attaching the client to a

2The server side of the BOINC platform is called the server complex since it can be made up of several
physical machines. In the following BOINC server and BOINC server complex is used interchangeably.

7

2.2. BOINC

project and the reverse process is called detaching. The client is attachable to many projects
at the same time and allows the user to specify how large a percentage of time on average
should be spent on each project.
The client takes care of scheduling among jobs from different projects, possibly preempting
jobs, downloading and uploading results to the different projects it is attached to.
The user has a lot of control over the client via user preferences. Some of these preferences
are project specific and some are not. Among other things the user can specify whether the
core client should run jobs while the user is actively using the computer or only use it after
a specified period of time without user activity. As a project specific preference the user can
set a minimum and a maximum amount of work the client should keep on the computer for
the given project. Once the amount of work drops below the minimum amount, the client
contacts the project asking for enough work to get to the maximum amount. During this
session the client also reports any finished results3 since the last contact and checks for new
application versions. Finishing results is a two step process by the client, first the result is
uploaded as soon as it is computed and a network connection is available, and afterwards,
during the scheduling session, the result is reported i.e. the scheduler is informed that the
result is computed and uploaded. This scheme means that finished results can lie for days on
either the client or on the web server without the scheduler knowing about it. The local queue
of jobs on the client is processed in FIFO4 style, but since a client can be connected to many
projects at once the client needs to schedule among the different projects. The clients run as
many jobs at once as the number of CPUs on the host system5. It also reports how much
CPU time was spent on each result6. This is normally used to calculate the amount of credit
a user is awarded. This scheme has been devised to allow users without constant Internet
connection to participate in BOINC projects. The client communicates with the server using
normal HTTP to get through firewalls.
Besides doing all the work needed to run jobs the client is also capable of displaying application
specific graphics and these graphics can be used as a screensaver. All of this is of course to
attract and entertain users in the first place.
The client is available for Windows and Linux on Intel X86 architectures, for Mac OS X on
PowerPC, and Solaris on Sparc architectures, but since it is open source it should not be too
difficult to get it running on other platforms as well.

2.2.2 User Security

From the users’ perspective security is ensured by the project hashing all programs and data,
and signing the hashes with a private key. This signing should be done on a computer that
is not connected to the Internet to minimize the risk of getting the key stolen. This is the
only security the users have. They can be certain that the code they got was from the project
they signed up with, but they have to trust that the project is not, deliberately or otherwise,
delivering malicious code. Nor can they be certain that somebody had not already at the
beginning spoofed the project. For example somebody could have made the SET1@home7

3The concept of results is explained in section 2.2.2.
4First-In, First-Out.
5Since hyper-threading CPU’s are identified as a normal SMP system to the OS the client runs two jobs

per hyper-threading CPU (Only two-way hyper-threading is available at present).
6Again the concept of results is explained in section 2.2.2.
7Notice the slight misspelling.

8

2.2. BOINC

project to lure people who accidentally went to the wrong homepage into running a distributed
mail server for spamming.
One idea to get around this problem is to make a BOINC client that can accept a list
of projects to block. This way projects that are spoofing could be blocked. This of course
only helps if the project where the user downloads the client from is being honest. This is
currently not implemented in the core client. The client also protects users from runaway jobs
by enforcing limits on the CPU-time and on the disk usage of a job. If these limits or an
overall limit on the disk usage by BOINC is exceeded the job is killed and its files deleted.
The job limits are set by the project when creating a job but the overall disk usage limit
is set by the individual users. This scheme means users have to trust the project’s limit on
CPU-time but is protected against excess disk usage even without trusting the project.

2.2.3 Project Security

David Anderson gained a lot of experience with hackers during the SETI project. He found
that there are generally three ways people will try to hack a PRC system. These three ways
also apply to the BOINC system. We believe they are not exhaustive ways of hacking the
direct functioning of BOINC, but the major ways. Some people will try to hack the web server
or the other standard server components, but these are not directly related to BOINC and
will therefore not be discussed here, though care should of course be taken to try and prevent
these attacks as well. The three ways are:

1. Users might try to return wrong results in the hope of destroying the project goals.

2. Users might try to return very large results in the hope of overburdening the server.

3. Users might try to get more credit than what they are due.

The first problem is solved by giving out the same calculation to a number of different users.
This number can be set for each job individually, but the BOINC standard is five. When
the results are returned they are compared according to a comparison algorithm the project
supplies. When enough results agree, a canonical result is chosen. This means that if anybody
returns a wrong result it will disagree with the quorum, be discarded and the user will not
be awarded any credit. The number of results that make up a quorum can also be specified
for each job, but the default is three.
This redundant computing gives rise to a somewhat confusing terminology, a problem instance
is called a “WorkUnit” (WU) and copies of the problem instance representing the redundant
computations are called “results” even though they have not yet been computed. Whenever
the administrator creates a job, he is in fact creating a WU, and from this WU a number of
results to be given out to clients for computing is created. The number of results created is
specified when the WU is created along with a number of different parameters regarding the
results. One more reason for doing redundant computing besides the built-in safety is to cope
with client errors and clients never returning the result, perhaps because the user got bored
with the project and detached his client. If the initially created results all fail or timeout more
result are created up until a limit set when the WU was created.
The second problem is solved by limiting the maximum size of the output files that the
server will accept. This is one of the parameters given when creating a WU. When clients
return results they connect to a CGI8 program called the uploadhandler. It, as the name

8Common Gateway Interface.

9

2.2. BOINC

implies, handles the upload and kills the upload if the maximum size is exceeded. The third
problem does not sound so serious, after all it does not hurt the research if some user gets
a higher rank9 than he is supposed to have. The problem lies in the psychology of keeping
your community willing to give you their computer time. A few users whose foremost interest
is helping science will continue but other users will become disgusted with the cheaters and
unfortunately also the project and will therefore stop donating time to the project. BOINC
solves this problem in the same way that it solves the problem of people returning wrong
results, by doing redundant computing. Users returning valid results will normally receive the
average credit of the other valid results for the specific calculation.10 So if a user tries to get
too much credit he will simply end up giving more credit to everybody with a valid result for
the given calculation. Thereby lessening the incentive to cheat.
As stated above we do not believe the three ways are exhaustive since it would be possible to
stage a Distributed Denial of Service(DDoS) attack on the server complex by having clients
constantly upload the same results. This would waste resources on the server complex and
generate a lot of network traffic possibly denying behaving users of service. It is very difficult
to protect against this type of attack, even if uploading of the same file repeatedly is prevented
it will still require some resources to figure out that a given file has already been uploaded
and turn the client away. We believe there are more ways of tampering with the system than
those presented here, but at present no other methods have been used to attack the existing
BOINC projects.

2.2.4 The BOINC Server

The BOINC server consists of at least one web server that handles up- and downloads and a
database server that keeps track of the state of the WorkUnits and their associated results.
Furthermore five different daemons periodically check the state of the database and perform
any needed tasks within their area of responsibility. All these programs can be run on the
same machine or they can be distributed to different servers for performance reasons. This
was one of the lessons learned from SETI@home. The server runs on Linux and Solaris, but
being open source other platforms is a possibility.
Below we go into details of the five daemons and a few other components that make up the
BOINC server.

2.2.4.1 The Transitioner

This program is application independent. It handles the state transition of WUs and results.
The transitioner checks the state of a WU in the database and updates the appropriate state
fields in the database, once a WU is ready for a state transition. This is complicated by the
fact that a WU does not have an overall state, but a set of substates. These substates involve
the states of its associated results. For instance if they are ready for validation, and there
is enough results ready for validation to grant a quorum the state of the WU is changed to
”ready for validation”. The transitioner generates the initial results and generates more if
timeouts or errors occur. It is one of the most CPU intensive programs, it can therefore be

9Users are ranked according to their contribution to individual projects causing competition among them.
This is a major driving force in getting users to donate their compute power.

10How this is actually handled is entirely up to the validator, which is project specific. For instance the
minimum credit could be awarded to all users who returned a valid result.

10

2.2. BOINC

split into many processes that each has the responsibility for a subset of WUs. These processes
can then be distributed to different servers.

2.2.4.2 The Validator

The purpose of this daemon is to verify whether the returned results are valid or not. It is
part of the project back end shown on figure 2.1. When run it checks the database to see if
there are any new results uploaded that need validation. If there is, the validator then runs
an application specific function for comparing the results. The implementer of the validator
functions has to specify two functions; one that compares two results and one that compares a
set of results. The first is used to decide whether to grant credit when a new result is uploaded
and a canonical result has already been found. The second is used to decide on a canonical
result from a set of results. The implementer might for example consider results that agree
to the third decimal as good enough, but require that at least four results are within this
range. Furthermore it allows the user to perform further sanity checks on the results. If we for
instance were simulating gravity on a body dropping freely in the atmosphere, we could check
if it ended up higher than it started. This should never happen so we would not accept the
result. Whether the cause of this occurrence is errors in the client or in the simulation program,
we would never want such a result to be validated. When a WU is created it is specified how
many agreeing results are needed for that particular WU. This value could have been set
on an application basis but since different people with different needs could potentially be
submitting WUs for the same application the method chosen allows these different people to
set different values. It is also possible that WUs the same person has different needs. Once
there are enough agreeing results a canonical result for the WU is chosen from the set of
agreeing results. The WU is hereafter flagged in the database as ready for assimilation.

2.2.4.3 The Assimilator

The assimilator regularly checks if new WUs are ready for assimilation. It is like the validator
part of the project backend depicted in figure 2.1. The administrator must supply a function
that determines what is to be done with the canonical results. It could for example zip up
the result files and e-mail it to the person interested in it, or automatically do postprocessing
on the data extracting the interesting parts and storing it on a magnetic tape storage device.
Once the WU has been assimilated, the WU will be flagged as completed.

2.2.4.4 The File Deleter

The file deleter daemon simply checks for completed and assimilated WUs accumulated since
its last run. If so, it cleans the web server of input and output files related to these WUs.
It is therefore essential that the canonical result’s output files are copied somewhere safe in
the assimilation phase, if they are needed. It only deletes files not database records, so it is
always possible to go through the database and find information on WUs, results etc. even
after their completion (and file deletion...).

2.2.4.5 The Feeder

The feeder loads undispatched (unsent in BOINC terms) results from the database into a
shared memory segment. This prefetching of results is done to improve performance of the

11

2.2. BOINC

entire BOINC system by limiting the number of queries on the database. Especially the
performance of the scheduler (see below) is improved, when dispatching results to clients it
only needs to access the shared memory segment, which contains many more results than
needed for one client, instead of doing a query on the database. The results loaded into the
memory segment were randomly chosen in the early versions of BOINC to prevent cheating
as it would make it virtually impossible to have control of say 5 clients and have them connect
in rapid succession to get all results associated with a specific WU. If one user got all results
for a specific WU, he could easily fool the validator. Because of performance problems the
new versions of BOINC load results on a first come first served basis, meaning results are
loaded in the order their respective WUs were submitted. all: Command not found.

2.2.4.6 The Scheduler

The scheduler is a CGI program that is run whenever a client connects to the project and asks
for work. It is shown as the scheduling server in figure 2.1. Instead of querying the database
it gets work from the shared memory segment loaded by the feeder. The scheduler matches
results with clients, since not all clients are identical and certain user settings also differ. For
instance one user could be running a Linux version of the core client and have specified that
the core client can only use 10 MB of disk space and 20 MB of RAM, while another user
could be running the windows version and allowed it to use 100 MB of disk space and 100
MB of RAM, these users are clearly able to process different results. During a scheduling
session the core client also reports any finished results, which have already been uploaded,
since the last scheduling session. After a scheduling session the core client is left with a list
of results to process and a list of URLs from which to get the needed files i.e. input files and
the application files, if not already on the host machine.

2.2.4.7 The Database

A MySQL database stores all information relevant to the BOINC server complex. This in-
cludes information about registered users and their associated hosts11, about applications and
application versions, about BOINC core clients and the versions hereof and of course about
WUs and their associated results. Basically the entire state of the server complex is stored in
this database and queried by among others the above mentioned daemons.

2.2.5 BOINC Applications

To get any work done by BOINC, projects must implement at least one BOINC application
possibly ported from an existing application. Once the application has been implemented in
the form of an executable, it must be registered with the BOINC server and the administrator
can start creating WUs for this application. This means that WUs are basically nothing
more than a specification of input files and command line switches to an already registered
application. If the project wants to run their computations on different platforms, a version
of the specific application for each desired platform must be implemented and registered.
WUs are not bound to a specific platform nor are they bound to a specific version of the
application, the latest version for the appropriate platform is simply used.
In order for an application to be a BOINC application it must call certain functions from the

11One BOINC user may sign up many machines all using the same user ID.

12

2.2. BOINC

BOINC API, which is implemented in C. BOINC applications must call a BOINC initialization
function at the beginning and a BOINC finishing function at the end. Besides these two
functions BOINC applications are encouraged to call a function communicating the progress
in percent to the core client, so that users can see the progress on their screens. Users also
expect some sort of graphics to be present so BOINC applications should implement a specific
function for drawing graphics, which will be called by the core client, if the user requests that
the graphics be displayed.
If the application uses input files or non temporary output files, which of course most do, the
filenames must be translated before opening the files. This is done by calling a function from
the BOINC API and it is done because each application is run on many different input files
and produces many different output files. If each of these files from different runs had the same
names, each run would require a separate directory on the server and on the client to avoid
names clashing. Since the application is the same between runs it is not possible to change
the files names internally in the application between runs and it would be very impractical to
recompile it for every run. All this means that the application has logical file names and these
files names are translated by the core client to physical file names at runtime. The physical
file names are specified when the WU is created.
Checkpointing can be a big advantage, but in order to support it the application must call a
BOINC API function, that tells the application if it is okay to checkpoint now. This is because
the user can instruct the client to only use the hard drives on the computer at certain intervals
to avoid spinning up the drives frequently (on laptops for instance). If checkpointing is allowed
by the core client the application must then do all the hard work of checkpointing by itself and
then call another BOINC API function to tell the core client it has finished checkpointing.
This has to do with the fact that the core client records the CPU time spent on a result to
calculate the credits. If a result is restarted the CPU time begins counting from the time
spent at the last checkpoint instead of zero.

2.2.6 Versions

BOINC is undergoing continuous change and improvement as new versions arrive. When we
first started using BOINC in the spring of 2004 it was practically in a beta stage even though
this was not stated anywhere. The documentation was just beginning to be written and new
chapters and sections emerged on the website almost every day. BOINC uses a major and
minor version number system, major versions represent big changes that break compatibility
with the former major version meaning core clients only work with servers running the same
major version as themselves. Minor versions represent changes that do not break compatibility
and can therefore by done quite frequently. Since updating the core client entails the users
manually downloading and installing a new version, major version changes were scheduled
to be once every couple of years. When we started using BOINC the latest version was 2.19
(major version 2 minor version 19). At the time of writing, the latest version is 4.1912, meaning
2 major version upgrades in less than a year. Major version changes often require changes to
applications which is particularly painful when a stable version for the many different systems
it runs on, has finally been achieved. An example of a minor version change, is the fact that a
BOINC application now figures out if it is running in standalone mode at runtime. Standalone
mode is a test mode allowing the application to be run without running it under the core

124.19 is the latest stable version, the latest developer version is 4.69.

13

2.3. CONDOR

client, earlier versions required a flag to be set in the source code prior to compilation. This
change was implemented after our implementation of the BOINC-Grid bridge and eliminates
the need for the specially modified core client13. If the change had been available at the time
we implemented the bridge, we could have made a much simpler design.

2.2.7 Summary

Via a single BOINC client users can donate CPU-cycles to many different projects at the
same time. Users security is ensured by signing executables and data, however sandboxing is
not used so users must trust the projects they sign up for. The system uses a pull model of job
distribution and HTTP to overcome firewalls. The client is available for many platforms and
since the entire system is open source, users can build their own client for whatever platform
they run14.
A job in BOINC terms is called a WorkUnit (WU). The BOINC system runs the same WU
multiple times on different machines, for reliability reasons. These copies of a WU, i.e. the
jobs that are actually run on the clients, are to much confusion called ’results’. The results(out
data) of these ’results’ are compared using a project specific algorithm to find the end result
i.e. the ’canonical result’.
The server side of the BOINC system consists of a database recording the system state
including jobs, a web server serving data for the clients and suppling access to the scheduler,
and five daemon programs: the transitioner, the validator, the assimilator, the file deleter,
and the feeder. The transitioner takes care of state transitions of the WUs and the results,
the validator validates results, the assimilator does postprocessing on the canonical result
once found, the file deleter does garbage collection by cleaning the server of files from finished
WUs and the feeder prefetches results.
Applications have to be specially made for running BOINC by using the BOINC API. This
API enables file names to be translated allowing different input files with different names to be
used by the same application without changes and allowing the output files from different runs
to have different names. The API also has functions for drawing graphics and for informing
the core client on progress with a given job.

2.3 Condor

Condor is a very sophisticated cycle-scavenging platform, which is currently being used at
CERN, so this would seem to be the obvious choice for the public computing platform part of
the bridge. But the obvious choice is not always the best as we shall see, even though Condor
is already integrated with the Globus Toolkit15 for Grids. Condor is the result of the Condor
research project at the University of Wisconsin-Madison. The project was started in 1988 and
it builds on the results of the Remote-Unix project from the same university.
Figure 2.2 shows an overview of the Condor system and it should be consulted while reading
the following description of Condor.

13See section 5.3.1 for information on the modified core client.
14Although the projects might not have applications for this platform.
15See section 4.2 for information about the Globus Toolkit.

14

2.3. CONDOR

Figure 2.2: The Condor system using the standard universe. From [5].

A Condor system, called a pool, consists of a central resource manager, one or more sub-
mit machines, and one or more execute machines. The central resource manager handles the
details of pairing jobs with resources and it involves knowing about both the resources and
the jobs. This knowledge is obtained via ClassAds, which will be dealt with in section 2.3.2.
The submit machines are machines from which is it possible to submit jobs to the Condor
pool. These jobs are run on execute machines which are machines that are either dedicated to
Condor jobs or normal desktop machines configured by their users to run Condor jobs when
otherwise idle. The users/owners of the execute machines are called providers and the actual
people submitting jobs to Condor are called users.

2.3.1 Features

Condor is very flexible and supports many features and many different computer platforms16.
One very central concept in Condor is universes, these are runtime environments that provide
different features for the Condor user. Condor supports the following universes:

• Standard

• Vanilla

• PVM

• MPI

• Globus

• Java

16A computer platform is defined as a combination of an operating system and a hardware architecture.

15

2.3. CONDOR

• Scheduler

The standard universe is a universe inherited from Condor’s predecessor Remote Unix. It
features remote system calls in which a shadow process is started on the submitting machine
to process system calls, that are now transfered over the network from the execute machine.
This mechanism is shown on figure 2.2 and it permits file accesses and user IDs to refer to the
originating environment, and it also protects the execute host. There is potentially a serious
performance impact with this mechanism, especially if a given job has many system calls. Such
a remote system call is a lot slower than normal local system calls. If a submit machine has
many standard universe jobs running on the Condor system, this machine has to run many
shadow processes and has to service many jobs further impacting performance. The universe
also supports application independent checkpointing and migration, so if an execute machine
becomes unavailable a job can be checkpointed and migrated to a new execute machine to
resume execution. Since Condor can be set up to only use the execution machine after a period
of no user activity, an execution machine can become unavailable in the middle of executing
a job. If the job can not be restarted within a reasonable time limit, it can be migrated to a
new machine. The checkpointing can also be used to periodically checkpoint to the submitting
machine, so that in case of the execute machine crashing, it can be restarted from the last
checkpoint on a new machine. Jobs running under the standard universe requires relinking of
the application with special libraries, which is not possible if the source code is unavailable.
There are also a number of limitations to the applications that can be run under this universe
such as only single process applications.
The Vanilla universe offers fewer limitations, but also fewer features. Jobs running under
this universe cannot use checkpointing or remote system calls. The loss of remote system
calls means that files used by the jobs must either be on a shared file system or files must
be explicitly transferred by Condor. The loss of checkpointing means that jobs cannot be
migrated and therefore might have to be restarted in case of a crash or a machine becoming
unavailable due to prolonged local user activity.
The PVM and MPI universes allow for applications written for the Parallel Virtual Machine
interface or the Message Passing Interface respectively to be run under Condor. To use the
MPI universe the user must select the number of nodes needed and at the time of writing
link with a specific implementation of MPI, called MPICH. Condor will then try and find
a dedicated Beowulf cluster to run the job on and if this is not possible ordinary desktop
workstations will be used instead. The PVM universe supports master-worker style jobs for
PVM and uses both dedicated Beowulf clusters and normal desktop workstations. The normal
workstations can of course enter and leave the virtual machine as they become available and
unavailable respectively. The master application that is run on the submitting machine, never
gets preempted and since it can apparently be quite tricky to write a PVM program to run
on Condor resources, a special framework called MW17 has been created to aid in the task.
Because of the dynamic nature of the virtual machine, the user is required to select a minimum
and a maximum number of nodes needed when submitting a PVM job.
The Globus universe allows users to submit jobs to Grids running the Globus Toolkit through
Condor. This is of course very interesting and will be dealt with in the Condor-G section below.
The Java universe enables Java bytecode to be run under Condor.
The last universe, the Scheduler universe, executes jobs on the local machine. It is possible

17MW is a tool for making a master-worker style application. For more information visit
http://www.cs.wisc.edu/condor/mw.

16

2.3. CONDOR

to run complicated sets of jobs which are dependent upon each other under Condor. This
is done via the Directed Acyclic Graph Manager(DAGMan), which takes a directed acyclic
graph(DAG) as input, where the nodes represent jobs and the edges represent dependencies.
The DAGMan then works as a metascheduler for Condor and submits the jobs in the DAG in
the right order (waiting for jobs to complete before submitting new jobs dependent on output
from these previous jobs) to preserve dependencies.
Condor supports Linux, Solaris and Windows(NT/2000/XP), among others. It also supports
different hardware architectures such as Sparc, MIPS, Alpha, Itanium and Intel X86. Not all
of the mentioned platforms are fully supported by Condor, for example the Windows version
does not support the standard universe.
Condor also includes heterogeneous support, which means that jobs can be submitted and
allowed to run on different computer platforms, if executables for these platforms are available.
The job is not bound to a specific platform before it is run, which means there will be more
machines to choose from when trying to find an execute machine. This of course introduces
a problem with migration, since jobs could be migrated to a different platform from the
one it originally ran on. Platform independent checkpointing would require support from the
application, but since one of the major advantages in Condor is the application independent
checkpointing, Condor makes sure that jobs only migrate between machines with the same
platform.
Finding hosts for jobs in Condor is done through a process called matchmaking, which is
discussed in the following section.

2.3.2 Matchmaking

Matchmaking is a very general way of matching providers and users of a service. This matching
is done via classified advertisements (ClassAds). Providers advertise their service and possibly
constraints connected to this service, while users advertise their needs and wishes. These
ClassAds are sent to a matchmaking service called the matchmaker, which matches providers
and users based on their ClassAds. ClassAds are usually sent every 5 minutes to reflect any
updates in for instance the load, but the update interval can be adjusted by the administrator.
The classad has to be formatted according to a certain language, but the content can be
chosen freely by users. In Condor this means, if a user has a job that needs for instance
special hardware, maybe a specific OpenGL card, this user can specify a constraint in the
classad, that the job can only be run on machines with this OpenGL card. Of course if no
host has this card, or it has not been advertised in exactly the same way, the job will not be
matched to a machine.
Figure 2.3 shows a classad describing a provider, which is pretty self explanatory except for
the ranking. Providers can rank matching users (who in turn can rank matching providers)
to provide for instance, a bias towards fellow research group members or friends (as in the
example in figure 2.3).

17

2.3. CONDOR

[
Type = "Machine";
Activity = "Idle";
DayTime = 36107 // current time

// in seconds since midnight
KeyboardIdle = 1432; // seconds
Disk = 323496; // kbytes
Memory = 64; // megabytes
State = "Unclaimed";
LoadAvg = 0.042969;
Mips = 104;
Arch = "INTEL";
OpSys = "SOLARIS251";
KFlops = 21893;
Name = "leonardo.cs.wisc.edu";
ResearchGroup = {"raman", "miron",

"solomon", "jbasney" };
Friends = {"tannenba", "wright" };
Untrusted = {"rival", "riffraff" };
Rank =

member(other.Owner, ResearchGroup) * 10
+ member(other.Owner, Friends);

Constraint =
!member(other.Owner, Untrusted)

&& Rank >= 10
? true

: Rank > 0
? LoadAvg<0.3 && KeyboardIdle>15*60

: DayTime < 8*60*60
|| DayTime > 18*60*60;

]

Figure 2.3: An example ClassAd, describing a provider. From [6].

[
Type = "Job";
QDate = 886799469;

// Submit time secs. past 1/1/1970
CompletionDate = 0;
Owner = "raman";
Cmd = "run_sim";
WantRemoteSyscalls = 1;
WantCheckpoint = 1;
Iwd = "/usr/raman/sim2";
Args = "-Q 17 3200 10";
Memory = 31;
Rank =

KFlops/1E3 + other.Memory/32;
Constraint =

other.Type == "Machine"
&& Arch == "INTEL"
&& OpSys == "SOLARIS251"
&& Disk >= 10000
&& other.Memory >= self.Memory;

]

Figure 2.4: An example ClassAd, describing a job. From [6].

18

2.3. CONDOR

Figure 2.4 shows a classad describing a job, and it also shows the support for ranking. The
attributes can be made up freely by the users and the providers, but they have to agree on
the attribute names and types.
An important thing to note is that matchmaking matches the providers and users but it does
not actually run jobs. It merely tells the provider and the user that it has found a matching
counterpart. It is then up to the involved parties to handle matters further.
Compared to BOINC this is a much more flexible way of matching jobs with resources, but
the flexibility comes with a loss of standards. In BOINC every client has the same attributes
defined, which may not be the case in Condor. We believe that for the kind of jobs that
BOINC is supposed to run, using static attributes is the best way, whereas for the kind of
diversified jobs that Condor is supposed to run, matchmaking is best.

2.3.3 Scheduling

Condor takes care of scheduling by prioritizing users. Each user gets an initial priority of 0.5,
which is the best priority a user can get. Each machine the user runs a job on increases his
priority by 1, which also means that lower priorities are better than higher priorities. The
decrease in priority can be configured by the Condor administrator, but the priority half-life
is set to a day by default, meaning that if a user stops using machines, his priority will be
halved every day.
Condor doesn’t directly use the user priority to do scheduling. It uses the effective user
priority, which is the normal user priority multiplied by some user-specific factor, allowing for
preferential treatment of individual users.
The effective user priority is used to calculate the share of Condor machines each user should
be allocated, which is inversely related to the ratio between user priorities. This means that a
user with half the priority of another user will get twice as many resources as the other user.
Condor will try to make sure that users get the shares they are entitled to, by allocating
newly available machines to the user with the biggest difference between his actual share and
the entitled share. The scheduler might also preempt jobs if a high priority user (meaning a
user with a low effective priority) submits jobs when Condor is only running jobs from low
priority users. This preempting is configurable by the administrator and care should be taken
to avoid thrashing of jobs from low priority users. The default is to not preempt jobs that have
been running for less than one hour. Even with Vanilla universe jobs, this scheme should not
lead to starvation of jobs from low priority users, since only enough jobs will be preempted
to insure high priority users get their share, meaning that the low priority user would still
get a small share. Even in the case of complete preemption of a low priority user’s jobs, his
priority will be halved by default every day meaning that the priority will eventually be low
enough to allow the jobs to run.
Besides this prioritizing among users, each user can prioritize his own jobs.

2.3.4 Condor-G

Condor-G is an extension of Condor, which makes it possible to use the normal Condor inter-
face for submitting jobs to Grids running the Globus Toolkit. The advantages of Condor-G,
compared to the ”globusrun” command from the Globus Toolkit, is the familiar Condor inter-
face, the ability to submit many jobs at once, monitoring of jobs, job completion notification
and a certain amount of fault tolerance on the side of the submitting machine. To submit a

19

2.3. CONDOR

job to a Grid the user needs to specify the universe as being Globus as well as the URL of a
specific Globus scheduler. The scheduler can be omitted, which will cause Condor to search
for a suitable Grid using ClassAds. The use of ClassAds requires the Grid sites to advertise
their attributes in a classad to the resource manager. The use of Grid resources requires cre-
dentials, which of course are also needed with Condor-G. Therefore Condor-G comes with a
tool to create proxy-credentials to be used by the jobs submitted to Condor-G.

Figure 2.5: Job-execution on Globus resources via Condor-G. From [7].

Condor-G uses standard Globus protocols to execute jobs on Grids, specifically it uses Global
Access to Secondary Storage(GASS) for file transfers, Globus Resource Allocation and Man-
agement(GRAM) for submitting and monitoring jobs and Globus Security Infrastructure for
authentication. Figure 2.5 shows Condor-G executing jobs on a Globus-managed Grid.
Submitting jobs to the Globus universe has certain limitations. It does not support check-
pointing (and migration), remote system calls and certain other features. Because of these
limitations, Condor-G comes with a mechanism called Glidein, which temporarily turns a
Grid machine into a normal Condor execute machine. This is done by submitting a job to the
Grid machine, which in turn runs the Condor daemon like normal Condor execute machines.
When the Condor daemon running on the Grid machine has been idle for a certain period
of time it gracefully shuts down, turning the machine into a normal Grid resource again.

20

2.3. CONDOR

To prevent security holes, only the user that executed the Glidein (and therefore has Grid
credentials) is allowed to run Condor jobs on the Grid machine. Because the jobs have to
be submitted like an ordinary Condor job, he must specify in the job classad that the jobs
need to be run on this particular machine. Otherwise the jobs might get dispatched to other
Condor machines, leaving the Grid machine idle since only this user can run Condor jobs on
it. In addition Condor-G supports something called flocking. Flocking is when jobs are run on
a machine in a different Condor pool than where it was submitted. When a job cannot find
resources at its home pool, it is possible to allow it to flock to another pool with available
resources to run there instead. It is possible to allow jobs from different pools to flock both
ways or only one way. Condor-G is used at CERN to submit jobs to LCG-218 mainly because
it provides job monitoring via a program called the grid monitor and prevents flooding of jobs
to the Grid. The grid monitor offers better performance since it is able to monitor multiple
jobs as opposed to the standard Globus19 equivalent which is only capable of monitoring a
single job.

2.3.5 Condor vs. BOINC

There is a big difference between Condor and BOINC at a conceptual level; Condor is meant
to run very heterogeneous jobs inside the boundaries of an organization and BOINC is meant
to run very homogeneous jobs outside the boundaries of an organization. One implication
of this is that Condor trusts the resources it uses, whereas BOINC does not. Because of
the lack of trust, BOINC does redundant computing to try and avoid cheating and it signs
executables to improve user security since it is operating on the Internet, whereas Condor
does nothing of this kind although it can be configured to authenticate entities and encrypt
all communication.
An important technical difference lies in the way communications are done. By default Condor
uses port 9618 and 9614 to communicate. These are not ”well known” ports, as specified in
RFC793, and is therefore rarely open in firewalls. Condor uses the push method of distributing
jobs i.e. the central resource manager connects to the execution machines. This scheme can
not be used by BOINC since many of its users sit behind firewalls, and asking them to change
their firewall configurations is not likely to succeed. Therefore BOINC uses only port 8020 for
communication and users pull jobs from the server complex so connections are established
from the client to the server instead of the other way around.
Because of its matchmaking and multiple universes, many different job types can be run
on Condor making it much more versatile than BOINC. BOINC requires specially designed
server side functions tailored to the specific application, as well as linking the application with
the BOINC API. This places a large obstacle in the way when it comes to running jobs under
BOINC. Because porting applications to BOINC requires quite a bit of effort, this effort only
pays off when the application has to be run many times, whereas in Condor basically any
application with binary compatibility can be run under the Vanilla universe with very little
effort. If we consider the standard universe, the migration and checkpointing allows for very
long running jobs, as opposed to BOINC, which does not have direct built-in support for

18For more information on LCG-2 and the use of Condor-G the reader is referred to section 4.3.1.
19See section 4.2 for a description of Globus and its job monitor the job manager.
20Port 80 is open in practically any firewall, so if you want to get round a firewall this is the port of choice.

The port can not be closed since it is used by the HTTP protocol, but as more and more protocols use it, it
is beginning to render firewalls useless.

21

2.4. OTHER PRC PLATFORMS

these features. Checkpointing can be done in BOINC, but it requires considerable work by
the application specific backend.
BOINC tries harder to attract volunteers and entertain them by having graphics and progress
indication of jobs as well as easy access to information about running and buffered jobs. All of
this should make it easier to attract users to a BOINC based project as opposed to a Condor
based project.
We have chosen to use BOINC because it supports PRC better than Condor in terms of
getting reliable results, protecting users and overcoming firewalls. We feel BOINC is a true
PRC platform whereas Condor is better suited for intra-organizational use. As a bonus BOINC
offers access to the many users of SETI@home and without users a PRC project is useless.

2.4 Other PRC Platforms

Although we have mainly focused on BOINC and Condor in this chapter, there are many
other public computing platforms available with various properties. In this section we will
briefly present some of these.

2.4.1 Frontier

The company Parabon has made a PRC platform called Frontier [10]. Frontier uses sandboxing
21 to protect the clients(providers in Frontier terms.) from malicious code, but, probably
because of this, they only support Java applications. The sandbox should make it impossible
for the application to access the providers’ files and programs, and it should also be impossible
to connect to any host other than the Frontier server.
Parabon’s platform is not open; instead the company is trying to make money from PRC.
This means that there is only one way to reach the public with a Parabon application, and
this is via Parabon’s servers. These servers let you run jobs on Parabon clients connected to
the Internet. Parabon supports two kinds of projects - non-profit and profit. If a project gets
accepted as a non-profit project, it gets free access to their servers and of course the providers.
If the project is for profit it will have to pay Parabon for the amount of CPU-time it receives
from the providers, who in turn get paid by Parabon for the use of their computers.
Parabon also has a version where the project runs the servers itself, which they call the
enterprise version. This version unfortunately only lets projects submit jobs to the clients in
its enterprise, which makes it nothing more than an enterprise-wide job distribution system.
Since Frontier is mainly targeted at profit seeking companies, who most likely want to protect
their intellectual property, Frontier uses SSL22 for transferring data to and from the client,
which makes it possible to verify that the data has not been changed en route. Furthermore the
application byte-code is obfuscated on the provider’s computer to prevent reverse engineering,
however the amount of security provided by this obfuscation is probably very limited.
Parabon uses a different scheme from BOINC to check the validity of the returned results;
they periodically send out jobs with known results to the providers to check up on them. If
this test is failed the provider will not be used again.
Because Parabon is a closed platform and access to public providers is only possible via

21Sandboxing provides an isolated environment for applications to run in protecting the rest of the machine
against malfunctioning or malicious applications in the sandbox.

22Secure Socket Layer.

22

2.4. OTHER PRC PLATFORMS

Parabon’s servers (which involves payment for used resources), we did not feel that Parabon
was suited for our purpose. Besides this, the limitation that only applications written in Java
can be run also made it ill-suited for our purpose.

2.4.2 DCGrid

Entropia’s platform is called DCGrid. It is very similar to Parabon, but not identical. DCGrid
is also a closed platform and it is very much aimed at enterprises. There is very little focus on
letting the public do the computing, but instead DCGrid is aimed at being installed on the
computers of a given enterprise, so that they can be used as cycle-servers by the enterprise.
We do not see any problems with taking the platform to the public since the security seems
to be in order. All the data on the client is encrypted and checksummed so that any changes
to it can be detected. We do not have any information on how data is transferred to the
client, but it should be fairly trivial to secure this too. As far as protecting the client, DCGrid
uses sandboxing like Frontier, but with a different approach. Frontier only supports Java,
whereas DCGrid wraps a valid win32-executable in their sandbox, effectively intercepting
system calls and only allowing harmless ones to execute correctly. This means that DCGrid
is totally programming language independent. On the other hand it is very operating system
dependent, since they only support Windows. This limitation is not necessarily a big problem
when building a PRC project, since almost all public computers run Windows 23. We, on the
other hand, have to use it to run applications intended to run on the Grid (which is running
Linux), so the lack of support for this is very unfortunate. Entropia claims that DCGrid
supports OGSA and Globus Grid standards, whatever this means, but it might have proven
useful to us. Mainly because of the lack of support for Linux and the non-open platform, we
chose not to use Entropia.

2.4.3 Grid MP

Another non-open platform is United Devices’ Grid MP, which, like Frontier from Parabon,
comes in different flavours. There is an enterprise version, which could also be compared to
DCGrid; a pay-per-use version, where dedicated cycle-servers are used; and a global version.
The global version is the one we would be interested in. It seems to work a lot like BOINC,
which is not a coincidence since David Anderson from BOINC was associated with United De-
vices before his BOINC days: the user downloads a core client and then signs up for projects
he finds interesting. On the server side things look different from BOINC. United Devices
runs the servers and chooses which projects to offer to the public. There is no payment of
clients like in Frontier and there seem to be only non-profit applications running.
What Grid MP applications look like is a bit of a mystery, because of the non openness of
the platform. They do claim, however, that most applications can be run ”as is” whatever
this entails, but they also hint that specially designed applications offer better performance.
Security is very much a high priority in Grid MP. Clients are authenticated when communi-
cating with the server using certificates, so that misbehaving clients can be rooted out. Data
transfers are encrypted as well as data stored on clients, and executables require signature
validation. Furthermore, sandboxing is used, but how this is accomplished is uncertain.

2391.6% of the machines donating CPU-time to the LCH@home project were Windows machines. See section
B.2 for more information on the machines donating compute power to LCH@home.

23

2.5. SUMMARY

Grid MP also supports MPI24 to facilitate fine-grained parallel jobs, but this does not seem
usable for the global version since fine-grained parallel jobs usually require tightly coupled
machines with fast, robust, and always available connections between them.
United Devices market their platform as a Grid computing platform, however according to
the definition of a Grid, which we define in section 4.1, Grid MP is not a Grid.
BOINC offers the same features as Grid MP but Grid MP is not open source. Therefore
BOINC is a much better choice, when we possibly have to modify our chosen PRC platform
to build our bridges.

2.4.4 OfficeGRID

The contribution from MESH-Technologies is called OfficeGRID and it is unfortunately also
a closed platform. It is targeted at enterprises and the harvesting of spare cycles within
those. OfficeGRID applications must use a special OfficeGRID API to take full advantage of
the system in terms of parallelization. Fortunately this API is available for both C/C++ and
Fortran. Presumably standard applications can be run as well, but without the parallelization
of specially designed OfficeGRID applications. The platform supports Windows and Linux as
the operating system on the execution machines.
Specially designed applications for OfficeGRID use a distributed shared memory model called
TMem, which should make it easier to parallelize applications than with message passing
systems like MPI. TMem uses tuple spaces, supports dynamic networks, meaning nodes that
enter and leave the network during execution, and is resilient to network errors.
Because it is a closed platform without much support for public computing in terms of trusting
the results and protecting the clients, we have chosen not to use OfficeGRID although the
distributed shared memory model looks very promising.

2.5 Summary

In this chapter we discussed the Public Resource Computing(PRC) model, as well as a range
of specific implementations of it. We studied Condor and BOINC in detail. The greatest
advantage of Condor was that a program can be run under it without modification. BOINC
on the other hand is more demanding, but also has many advantages when doing really
public projects, such as a pull model for job distribution so that clients behind firewalls can
contribute. As well as many security features lacking in Condor. The analysis of the different
systems showed us that the best choice for the LHC@home project would be BOINC. This
project is described in the next chapter.

24Message Passing Interface.

24

Chapter 3

LHC@home

This chapter describes the work we did setting up a PRC project, namely LHC@home, at
CERN. After we give an introduction to CERN, we describe the application we chose to
be the target for our PRC project, before delving into the particulars of setting up BOINC
at CERN. Finally we provide some advice for other people thinking about starting a PRC
project based on our experiences. It will of course focus on BOINC, but it will also have
general advice applicable to any PRC system.

3.1 An Introduction to CERN

CERN, an acronym for Centre Européenne pour la Recherche Nucléaire, is as the name implies
a European research institution specializing in nuclear and particle physics. It was founded
in 1954 and is situated on the border between France and Switzerland just outside Geneva.
The main focus for the moment is the construction of the LHC, the Large Hadron Collider.
The LHC is a machine where particles are accelerated to near light speed and then they are
brought to collide inside detectors. The many different signals from the detectors are then
used to reconstruct the event. These events are then studied for clues to the nature of the
laws of physics. The rate of data production for these detectors is estimated to be around 10
petabyte a year.

3.1.1 Computing Needs at CERN

Computers are used for numerous heavy computational tasks at CERN, not only for analyzing
the data from the LHC. The accuracy needed in building the LHC also requires simulations
of many different physical systems affecting the calibration of the LHC, a funny, but true
story involves a mysterious error in the energy calibration of LEP1 that was later found to
be caused by the TGV2 departing from the Geneva train station. The collisions also have
to be simulated because only a small fraction of them will be of interest to the physicists
and it is simply not feasible to do a full analysis of every collision. It is predicted that there
will be around 800 million collisions per second and each will produce on the order of 50000
particles. This means that every second about 40 ∗ 1012 particles are produced that need to
be analyzed, which is about 10000 times faster than the rate a modern processor can add two

1Large Electron and Positron collider. The predecessor of LHC
2Train Grand Vitesse. French high speed trains.

25

3.2. SIXTRACK

floating point numbers. The analysis of each particle is of course much more involved than
just adding two floating point numbers. Physicists therefore simulate interesting interactions
to establish a kind of fingerprint for it. These are then used to filter the collisions.
One interesting common feature of all these different simulations is that they are independent
for each collision and therefore easily parallelized. Another feature is that, because most of
the studies are statistical of nature, a single result is not of interest only the aggregate of
all the results are. The most interesting benchmark for the scientist is throughput and not
response time. Only in the case where a single computer does not have the resources to process
a simulation, or where parallelization leads to super linear speed ups are regular clusters or
supercomputers an advantage. For these reasons Distributed Computing is ideal for most of
the computations done at CERN. This is also reflected by the IT centre at CERN, where they
have migrated away from the use of supercomputers (IBM, CRAY) to a large batch farm of
about 2000 PCs, expected to have increased to about 5000 by the time LHC is ready in 2007.

3.2 SixTrack

The LHC simulation that was chosen to be the basis for LHC@home was SixTrack. SixTrack
has been developed over the last 20 years by Frank Schmidt, and is used by CERN and other
synchrotrons3 around the world to do beam studies. Like much of CERN’s older software it
is written in Fortran. On the initiative of Eric McIntosh it is also used as part of the SPEC4

floating point benchmark. So CERN, when buying new computers, never have to estimate
how well a new processor will run SixTrack, but can look it up directly. Another added benefit
is that manufacturers will optimize their hardware and compilers to get the best benchmark
score, so modern CPUs and compilers are directly optimized for SixTrack performance.
SixTrack simulates a number of particles as they are accelerated around the LHC ring. It
calculates in small time steps the movement of the particles and the effect of the bending
magnets, focusing magnets and so on. The purpose is to determine whether the particles stay
in the ring or are lost. As the different parts of the accelerator ring begin to arrive at CERN,
they are studied and measured and the data added to the simulation. This way it is possible
to correct the placement of the different parts and to discover parts that are unusable before
the LHC is put into operation. It is imperative that the stability of the ring is ascertained
before the LHC goes into operation. If the beam dumps5, equipment worth many million CHF
may be destroyed.
SixTrack is ideal for loosely coupled distributed computing, because many different starting
points and velocities of the particles have to be tried. Each new set of starting conditions then
gives rise to a completely independent calculation. The amount of data transfered per result
is different for each calculation, but is on the order of 300 KB. A typical calculation takes
30 minutes on an average modern computer. This gives about 2 minutes of transfer time for
people using dial-up connections. That is a compute to transmit ratio of 15:1 for the slowest
connections. This seems very reasonable, but there is one catch; Sometimes the particles will
be lost very soon after starting the simulation. The simulation will then stop, maybe after only
one minute, because it serves no purpose to continue the calculations. Because the particles
in SixTrack are on the border of chaotic motion, there is no way to predict which starting

3A special type of particle accelerator.
4Standard Performance Evaluation Corporation.
5The particles do not stay inside the ring.

26

3.3. CPSS

conditions will lead to such a result. However, even though a few calculations with a low
compute to transfer time ratio might be very annoying for users on dial-up, it would not
pose a problem internally at CERN, nor would it for volunteers who have ADSL or similar
connections. We also foresee that this problem will disappear in the future, as more and more
people migrate to some form of broadband connection.
SixTrack was chosen as a pilot project for PRC, because of its high importance compared to
the funding it receives. The funding was probably the reason why the people behind SixTrack
were enthusiastic about running it on public resources, when other better funded groups were
more sceptical. The enthusiasm of the SixTrack people along with the support offered by them
was also a deciding factor when we chose SixTrack.

3.3 CPSS

Andreas Wagner and Eric McIntosh at CERN have already been working on making a screen-
saver version of SixTrack that could run on CERN desktop PCs, in hope of gaining more
compute power for SixTrack. They have pursued this project in their spare time, and have
come up with a system they call the CERN Physics ScreenSaver (CPSS). They had never
thought of going beyond the CERN desktops though, and CPSS was consequently not de-
signed with any kind of security in mind. The architecture is somewhat reminiscent of BOINC.
The server consists of a database storing data about the clients, and a repository of available
and completed jobs on the server. This server can be split up across multiple machines for
scalability, though this has not been tested in practice. The server does not automatically
support sending multiples of the same job for later comparison or validating the results. This
has to be done separately if it is desired.
The client contacts the server through the HTTP protocol just like the BOINC client. It is
though not nearly as sophisticated. It does not sign binaries, so it is vulnerable to a man in
the middle attack. It does not allow the user to specify usage limits or to run applications in
the background. It runs as a screensaver and in case of user interaction, it immediately kills
the running application and any progress is lost.
The work on CPSS meant that the SixTrack Fortran code was already ported to run under
Windows, and had been rigorously tested to insure that the results did not differ from the
Unix version.

3.4 CPSS vs BOINC

The CPSS system has some advantages over BOINC. The most important is that the appli-
cation can be run without modification, thus making it easier to port legacy applications to
the platform. Another advantage is that the client software is automatically updated. That
this does not happen in BOINC can cause some problems. Under BOINC, the interaction
between the application and the client software might cause the application to fail. This is
then fixed in the next version of the client, but you cannot be certain that all your users have
updated their BOINC clients. BOINC tries to solve this by tagging WUs with a minimum
client version, so WUs will only be distributed to a client fulfilling this requirement. This only
partially solves the problem because then you are relying on the user to actually update their
client to the new version which they might or might not do, thus lowering the performance
until everyone has upgraded.

27

3.5. DEPLOYING BOINC AT CERN

BOINC lacks tools for deleting WUs. So if a mistake is made in generating the studies, the
physicist has to contact the administrator who has to remove the WUs manually from the
database.
A final advantage is that the system was already undergoing testing when we started our
project, so the servers were deployed and the client program distributed at CERN. Using
CPSS for LHC@home might therefore have seemed like the logical choice.
CPSS does, however, have some serious drawbacks when it comes to taking the project to
the arena of public computing. There is, as we saw in section 3.3, no security. CPSS was
primarily designed with SixTrack in mind and not as a general purpose tool. The screensaver
part for example is tightly bound to the output files of SixTrack. It uses data from them to
display progress and other data. This could though be generalized. If the machine is used
while CPSS is running, it will kill the application and let the user take over, whereas BOINC
merely suspends the application. Because it was not designed for the public, CPSS contains
no credit system or forums, which according to David Anderson, is a crucial part to keep
the users’ interest. This would not be a problem at CERN, because the screensaver could
be installed on all machines automatically by the IT department, but it could prove to be
one when taking the project to the public. On this basis it was therefore decided that CPSS
would continue to run and be distributed internally, but BOINC would be used for the public
LHC@home project. This arrangement would then allow us to compare the performance of
the two platforms.

3.5 Deploying BOINC at CERN

Deploying BOINC at CERN consisted of three main tasks. First of all, to set up a server
complex to handle the BOINC project. Second, to port SixTrack to the BOINC platform and
third, to create an interesting screensaver for SixTrack that would please the users.

3.5.1 The Test Project

Our very first concern was to gain familiarity with the BOINC platform. To this end we
set up a test project on an ordinary desktop machine. This server we would use to develop
LHC@home on, until we had the project ready for public release at which point we would
move the project to real server machines dedicated to this project. After we had moved the
project we would continue to use the test project for testing new versions of SixTrack before
releasing them to the public as well as develop the bridges described in chapters 5 & 6. For
the test project we developed a small wrapper program that would take care of doing the
necessary BOINC calls as well as packing and unpacking data and running the main SixTrack
program. This would eliminate the need for adding the BOINC calls to SixTrack. The test
project showed that this wrapper approach, while very useful and easily adapted to other
BOINC projects, had some shortfalls. We will cover this in more detail in section 3.5.5.

3.5.2 Server Requirements

Once we had gained experience with our test server, our first job was to work out the server
requirement. We made this estimation together with Karl Chen, who had extensive experience
in this area from his work with the Seti@home project. We based estimate on the average
case. Peak needs were much higher and would demand a more rigorous statistical analysis

28

3.5. DEPLOYING BOINC AT CERN

than what we have room for here, and the worst-case scenario is that all the clients will try
to access the server at the same time.
The first number to estimate is the number of BOINC clients that are going to partici-
pate. This number is of course very difficult to estimate because it is based on how popular
LHC@home becomes. In the first two weeks after SETI@home switched to BOINC, the num-
ber of clients returning results rose to 40,000. Based on the experience of SETI@home we
have concluded that the number of effective full-time clients will be on the order of 10,000.
These 10,000 full-time clients are probably going to be made up of several part time clients,
for instance 40,000 clients donating time to on LHC@home 6 hours a day. 1000 clients is
probably too low, since we could get this number just by installing BOINC at CERN, a thing
that is likely to happen, either because people at CERN are very interested in this or as an
order from the management so that the computers that are idle can be used for something
sensible. 100,000 seems too optimistic since SETI@home has about 50,000 clients and these
are not even full-time6.
Next we need to estimate the amount of data each client is going to retrieve from and send
to the server. The first time a client tries to download a WU, it will also download the
SixTrack program from the server. This will only happen once, until a new version of the
SixTrack program is put into production. SixTrack will, once it is given the ”go ahead” for
this project, hopefully be very stable and only be upgraded very infrequently during the life-
time of LHC@home. The bandwidth needed for transferring the application can therefore be
ignored. The WU holds a description of the entire ring and the starting 4-vector of all the
particles, because the ring description can and sometimes is changed from WU to WU, the
entire description must be sent every time. This data is on the order of 2,5 MB uncompressed
and about 300 KB compressed. The latest versions of BOINC, which we did not have when
we started the project, allows for something they have termed sticky files. This means that
we can mark an input file as sticky. It will then not be deleted along with the other input
files when the WU finishes. New jobs needing this file will then preferably be sent to clients
already in possession of this file. This should reduce the needed upstream bandwidth. No
projects are using this feature in production yet, and it is therefore very hard to predict how
well this feature is going to work.
The result data is on the order of 12 MB uncompressed and 4 MB compressed, however this
can vary greatly depending on the options specified by the physicists7. Up to this point they
had done studies with at most 100,000 turns. Because this is only about 2 seconds of real
time they were very interested in increasing that number, but had not been able to because of
lack of compute power.8 The result contains the final position of the particles together with a
lot of numerical data from the entire run, in some cases the latter is needed for analysis, but
not often. We have convinced the maintainers of SixTrack and the physicists that in case the
bandwidth for transferring results or disk space becomes a bottleneck, they would only need
the file that contains the summarized result data. If the summarized data calls for it, they
can always rerun a WU locally to get the entire data. In the case of the reduced output only

6We are referring to the BOINC version of SETI@home, the classical version has on the order of 500,000
clients.

7The physicists can specify how many turns should be simulated and how often the particle position should
be written to disk.

8CPSS had increased the amount of computer power they had at their disposal, but because it simply kills
the application such a long running job would only have a small chance of finishing. A 24 hour job would only
have a chance of finishing during the weekend wasting the compute power during workdays.

29

3.5. DEPLOYING BOINC AT CERN

about 50 KB of data would need to be uploaded per WU.
At the time we started this analysis, an average WU would take about one hour to compute
on a 2 GHz P4 machine. This number is also highly influenced by the options the physicist
specify. During our work with the application we had to change Fortran compilers many
times, sometimes just versions and sometimes also the compiler manufacturer, and each time
the execution time for a WU became smaller. The version we finally used for the public had
almost halved the time an average WU takes.

3.5.2.1 Estimated Network Requirements

We need to estimate the bandwidth partly to determine the server requirements and partly
because of the network setup at CERN. If our bandwidth requirements are large, we have to
advise the network administrators at CERN and we have to request that packets destined
for our server get high priority in routers and firewalls. The estimated network requirements
are calculated as the size of a WU multiplied by the number of WorkUnits an average client
can process per time unit and the number of clients. For example the estimated compressed
upstream bandwidth is:
300KB/WU ∗ 2WU/(user ∗ hour) ∗ 10000users = 1.7MB/s

bandwidth in MB/s uncompressed compressed

upstream 13.9 1.7
downstream 66.7 22.2
downstream(reduced output) 0.3 0.2

Table 3.1: Estimated bandwidth requirements for SixTrack under BOINC based on 10,000
users.

From these estimates we see that it is going to be necessary to use the reduced output, be-
cause 22 MB/s are at the limit of what harddrives and Internet connections (it is a sustained
transfer rate larger than 100 MBit/s) can deliver. Because of the massive reduction in band-
width requirements when compressing files versus the wasted CPU-time, on the client and at
submission, compression was chosen.

3.5.2.2 Estimated Disk Requirements

The bandwidth requirements for the disks are of course the same as for the network plus some
local traffic, for example if the tables in the database become to big to keep in memory. The
estimation on the disk usage is based on a result redundancy of 3 per WU, and a verification
redundancy of 2 agreeing results.9 A result redundancy of three means that three results will
be able to share one set of input files. The result files will need to be kept on the server until
they have been validated and then they can be transfered to their final destination. Likewise
the input files have to be kept on the server until the WU has finished. The standard pref-
erences for the BOINC client, will make it request enough results to keep it busy for 3 days.
This is about 130 WUs on average.
Thus the input files will need:

9The actual values are set by the physicists when submitting a job, however these are the expected values.

30

3.5. DEPLOYING BOINC AT CERN

300KB/WU ∗ 0.33WUs/result ∗ 130results/User ∗ 10000users = 386GB
The output files will need:
4MB/result∗1(unassimilated)result/WU∗0.33WUs/result∗130results/user∗10000users =
1.7TB
The reduced output files will need:
50KB/result∗1(unassimilated)result/WU∗0.33WUs/result∗130results/user∗10000users =
21GB
These numbers are based on an immediate removal of the files when a WU has been assimi-
lated and that we submit exactly enough jobs to sustain the queues. If we submit jobs too fast,
the disk will run out of space and if we do it too slow, we will not gain the full performance
of the system. Because jobs will normally be submitted in batches, the disk space needs will
be higher than the steady state above.

3.5.2.3 Proposed Configuration

From the bandwidth estimates above it was clear that we would need to request high priority
Internet access for our servers. It was also clear that we would need some type of RAID10

system for our disks, because no single disk could deliver the sustained bandwidth require-
ments. We made the following proposal for a LHC@home server complex:

Web Server(WS):

will run will store hardware characteristics

Web server (Apache) input files disk: 0.5 to 2.0 TB hardware RAID
BOINC scheduler output files RAM: 1.0 to 2.0 GB
BOINC validator CPUs: 1-2, 1-4 GHz
BOINC Assimilator network: 1 GBit/s + 100MBit/s dedicated to DBS

Database Server(DBS):

will run will store hardware characteristics

database server (MySQL) database files disk: 50+ GB, RAID
BOINC work generator RAM: 2.0+ GB
BOINC Transitioner CPUs: 1-4, fast (lots of cache) e.g. Xeons
BOINC file deleter Network: 100MBit/s dedicated link to DBS

3.5.3 Server Setup

With the proposal above we approached Jan van Eldik of CERN’s IT-FIO11 department. He
found a discarded disk server that we could have. It had the following hardware characteristics:

Disk: 1.2 TB hardware RAID 5, 700 GB formatted capacity
RAM: 1.0 GB
CPU: 2 P3 Xeon 1.2 GHz
Network: 1000 MBit/s

10Redundant Array of Independent Disks
11Fabrics infrastructure and operations.

31

3.5. DEPLOYING BOINC AT CERN

While this machine was adequate for running the Web server, it was unfortunately smaller
than what we had hoped for for the database server, that now would have to be run on the
same machine. It was therefore agreed that if we got into performance problems, we could
get one more machine of similar setup within a reasonable time frame.
Now the BOINC server system is made in such a way that it is easy to distribute the server
functions across many servers should the need arise. It is though very important that it is
realized from the start that you may later have to add more servers to the project. Because
we anticipated having to add a new machine, we made sure that all accesses went through
DNS12 aliases, so we would just have to move a service to another machine and then change
the definition of this alias to point to the new machine.

3.5.3.1 Job Creation

Jobs for LHC@home are created by Eric McIntosh based on studies requested by the physicists
involved with building the LHC. Mr. McIntosh has a set of bash shell scripts to extract data
from special accelerator databases and generate the input files for the SixTrack application.
The generation actually involves running a small simulation on the data for every new seed
and it is therefore quite CPU-intensive. The shell scripts were already prepared to be used
with different execution systems like LSF and the CERN developed cycle-scavenger CPSS.
So to ease integration with BOINC, we wrote a set of bash shell scripts to be used by Eric
McIntosh’s scripts instead of the ones for LSF or CPSS, when he wanted to generate jobs
for LHC@home. The first version of these scripts used Secure CoPy(SCP) to copy the input
files to the BOINC server and then used Secure SHell(SSH) to log in to the BOINC server
and run the BOINC supplied program to create WU. To avoid having to type username and
password for every connection to the BOINC server, a public key system supported by SSH
and SCP was used to authorize Eric McIntosh. This first version was found to be too slow
due to the overhead of establishing secure connections and a new version was written.
The new version functions in two stages, a dedicated AFS13 directory, which the submitting
machine and the BOINC server both have access to, is used as a buffer. The script on the
submitting machine copies the input files to the AFS directory and creates a description of
the job. The jobs are picked up by a script on the BOINC server run at regular intervals by
cron14. The script copies the input files to the server’s local storage and runs the BOINC
supplied WU creator program. There is a small issue concerning simultaneous access to the
AFS directory since the two scripts run asynchronously. Left unattended it would be possible
for the server side script to pickup a job not fully transfered to the AFS directory. The
submit side script deals with this issue, by transferring the input files first and then creating
the description file using a unique temporary filename that does not show up when the server
side script lists the directory looking for description files. Since the server side script does not
find the description file of a job being created by the submit side script, it does not look for
the input files and does not create the WU. Once the description file has been created, the
temporary file name is changed and the job is ready to be picked up. This system ensures
robustness without the need for locking. It is even possible to use more than one machine to
submit jobs, since every submit side script uses a unique name for the temporary file name.
We have used more than one machine to submit jobs without conflicts. The new version has

12Domain Name Service.
13The Andrew File System. A network file system.
14Daemon to execute scheduled commands.

32

3.5. DEPLOYING BOINC AT CERN

not presented any performance problems.

3.5.3.2 Validation

The first validator we used required complete agreement between the result files. It compared
the different values in the result files and made sure that they were pairwise equal. We found
that this validator discarded a relatively large amount of results. The reason was very small
differences, 1 bit, in the result from different platforms. Results calculated under Win2000
would differ from results from other OSes (e.g. XP and Linux) and results computed on an
AMD chip would differ from those computed on an Intel chip. This peculiarity had never
been observed by CPSS, but the explanation is that most computers at CERN are installed
by the IT division that uses the same operating system and chip manufacturer for reasons of
economy. Because there is no way to know which platform is doing the computation correctly,
except for doing the calculations by hand, the physicist decided that such a strict accordance
was not necessary until the reason for the discrepancies could be found. A new validator was
therefore written by Markku Degerholm that allows for a relative difference of a millionth i.e.
if ABS(a − b) > 1e − 6 ∗ a or ABS(a − b) > 1e − 6 ∗ b the results are discarded. The old
validator is planned to go into use again once the problem has been resolved.

3.5.3.3 Assimilation

The assimilator on LHC@home is very simple. Once a WU is finished it merely copies the
output files of the canonical result to a given directory. This directory is currently an AFS
directory where Eric McIntosh can access the results, do postprocessing on them or move
them to permanent storage for later analysis.

3.5.3.4 Database

When we created the database we used the MySQL standard MyISAM type of tables. It
quickly became apparent that this was a big performance bottleneck. We therefore migrated
the database to use the InnoDB tables. Although these tables are bigger than MyISAM
and therefore will require more disk space and may be slower because more data has to be
transfered for each query they have one big advantage. InnoDB allows row level locking instead
of table level. We experienced that the server might run nicely under heavy load and suddenly
the performance would degrade heavily for a short period. We found that this problem was
caused by queries waiting on locks. After we switched to InnoDB this problem became much
less pronounced.
We also found that the database performance degraded significantly during the project. The
culprit was the tables containing results and WUs. They had become so large that they could
no longer fit in memory and therefore gave rise to a lot of disk traffic. Because none of the
BOINC daemons need access to assimilated WUs or results of assimilated WUs, we created
two new tables where we once a day moved the assimilated WUs and the results belonging
to it. The feature is now a standard part of BOINC.

3.5.4 Creating a Secure Code Signing Method for LHC@home.

As we saw in section 2.2, trust is very important for users of BOINC. One of the ways BOINC
insures the safety of the user, is to use code signing when distributing the executable to the

33

3.5. DEPLOYING BOINC AT CERN

clients. The clients can then be sure that the code does in fact come from CERN and nobody
else has intercepted the connection and sent their own virus program instead of the official
SixTrack program. This procedure is though hinged on the fact that LHC@home has a secure
method for signing executables. We will use the following method.
First of all, the machine that signs the executable must have access to the private key. This
key must never be discovered and copied by a malignant entity. The only way to secure
this key properly is therefore to not allow the key signing machine to be accessible from the
Internet. Secondly the machine should also be physically difficult to tamper with. Yet we have
to have a method of copying the executable to the machine and to copy the signature off of
the machine again.
Our solution to this problem is to generate a bootable CD image of Linux with the private
key on it. This CD should then be locked away in a safe when not needed. When a new
signature is needed, almost any X86 computer could be turned into the code signing machine,
without any fear of anybody having installed Trojans or viruses on the system since the
booted system would be completely isolated from the normal system. You can even leave the
network attached to the machine as long as we do not load any network drivers on the image
CD operating system. The executable could be transferred to the system using a CD or a
USB memory stick, and the signature could be copied out using the USB stick again.
We believe this is the safest and most convenient way of keeping the code signing secure. The
most unsafe part of this procedure is when the CD-image is made. We have to be absolutely
sure that the key is generated and moved to the image in a secure way. We also have to be
sure that any trace of the private key is removed from any other place than the final CD.

3.5.5 Porting SixTrack to BOINC

SixTrack is a simulation that does calculations on the particles in the region where their
behaviour becomes chaotic. It is therefore very important that the results of running the
program with the same input on two different machines agree, when the final statistics are
compiled. For that reason it is very important that the results are as similar as possible
across platforms. The only compiler that was found to provide this behaviour was the Lahey
Fortran compiler. The other tested compilers all had some small differences in their floating
point calculations. This difference only appears in about 1000 out of the 60 million returned
floating point numbers in the result. However these very small errors are significant enough
to cause errors in the final analysis according to Frank Schmidt, the creator of SixTrack.
The BOINC API only exists in a version for C/C++. We then had a choice of porting SixTrack
to C/C++ or the BOINC API to Fortran. Because of SixTrack’s high level of numerical
dependency, serious testing over the years and its size, it was out of the question to port it to
C/C++. One way to get around this barrier is to run SixTrack through a wrapper program,
like we had done during the test project. The wrapper would then communicate with BOINC.
The test project had though shown some problems with using this method. When SixTrack
was run through the wrapper it was for example not possible to have the graphics access data
structures from the SixTrack application. It was also possible to kill the BOINC client in such
a way that only the wrapper was killed and not SixTrack leading to unpredictable results
when BOINC was restarted among many other small problems. Although the wrapper still
worked fine from a purely computational point of view, we did not feel that it was something
we could let the public run. We therefore had to make a Fortran API for BOINC. The API
went through many phases, because each Fortran compiler we used had different ways of

34

3.5. DEPLOYING BOINC AT CERN

linking with C code. The final version, which we will describe here, should work with any
modern Fortran compiler because it creates object files that follow the calling conventions for
Fortran. We have also made a version for the Fujitsu-Compaq compiler a link to a description
of it can be found in appendix D.

3.5.5.1 The Fortran BOINC API

The API is a small library that you include in your BOINC build if you want to call BOINC
functions from Fortran. It makes sure the relevant symbols are available for linking as well as
doing the necessary translations of the function calls.
In Fortran a function definition and a function call have underscores pre- and appended
in the object code. We have to make sure that this symbol is available during linking. If
we from Fortran call the function Call BOINC init(0) the compiler will create a symbol
BOINC init that it expects to find during linking. C compilers automatically create the
prepended underscore, so all we have to do is create new aliases of the BOINC functions
with an underscore appended. Because of overloading, symbols in C++ object files have
their names mangled to include the calling conventions, the types of their input and other
information about the symbol. Even though the C++ standard includes a description of how
to implement this, some compilers chose not to honour this15. We therefore must also make
sure to declare the functions in the module as extern "C" so we are certain that the symbol
is created with the C conventions.
The function names will now be accessible from Fortran. The remaining problem is that
Fortran and C have different calling conventions. Everything in Fortran is call-by-reference,
whereas some types are call-by-value in C, for example integers. So the BOINC Fortran
API functions have to accept pointers as arguments and then dereference the pointers before
calling the C API. The final difference is the way strings are handled16. In C a string is a
null terminated character array but in Fortran it is a structure containing the character array
and an accompanying length. When a string is used in a function call in Fortran it is passed
as a pointer to the start of the character array(like in C) and the length is passed as an
integer appended to the list of arguments of the function. If for example you wanted to call
the function test which takes two inputs: a string and an integer, its definition in C could
be:
Void test (char *ingredient, int amount)

In Fortran you would call it with:
Call test("pepper",3000)

The call that the Fortran compiler generates would be similar to the C code:
char[6] p = ’p’,’e’,’p’,’p’,’e’,’r’;

Test(p,3000,6);

We therefore have to create a translation function from this to the ordinary null terminated
strings of C. We have worked together with Karl Chen from the BOINC project and our
BOINC-Fortran API is now a standard part of BOINC. Links to the code for the API can be
found in appendix D. Figure 3.1 illustrates the function of the BOINC-Fortran API.

15For example Microsoft Visual C++.
16There are more differences between C and Fortran, for example the way multi-dimensional arrays are

handled but these differences are not important in relation to the BOINC API.

35

3.5. DEPLOYING BOINC AT CERN

...

...
call boinc_init(var)

...

...

BOINC APP
Fortran

...

...
boinc_init(var){
translate var
res=boinc_init(var)
return res

}

...

...

BOINC-Fortran API
C/C++

...

...
boinc_init(var){
do_stuff
return res

}

...

...

BOINC API
C/C++

Figure 3.1: Using the BOINC-Fortran API to call BOINC API functions from within a Fortran
application.

3.5.6 The Screensaver

The BOINC framework allows an application to run graphics, and these can be used as a
screensaver if the user so desires. It is though not necessary for a project to supply any graph-
ics, in that case BOINC has a standard screensaver that will be displayed. Together with our
supervisors at CERN it was decided early on that we would need a screensaver. Partly to at-
tract users and partly to satisfy our objective of getting users interested in the science behind
the computations. Many ideas for how this screensaver could look were discussed, but it was
decided that we would follow the lead of SETI@home and do a visualization of the particles
flying around the LHC along with displaying different user statistics17. Acknowledging our
lack of artistic abilities, we therefore created and tested a basic framework for doing OpenGL
graphics and transferring data from SixTrack to the graphics routines, but left the work of
finishing the look of the screensaver and coding the graphics to someone else.
To this end Jasenko Zivanov was hired and worked with us during the summer. A screen shot
of the finished result can be seen in appendix B.5. The green smudges represents the protons
as they are accelerated around the ring. The movement of the protons were supposed to be
linked to the SixTrack simulation and a 3D model of the LHC. Jasenko worked hard with Eric
McIntosh to solve this problem, but it proved to be difficult to show the data in a fluent and
pleasing way. The simulation can complete a large part of a turn around the LHC for every
frame drawn to the screen, the movement of the particles on screen will therefore appear very
jittery. Unfortunately Jasenko had to return to his studies in Basel before he could finish
his work on this problem. The graphics shown are instead based on a simple simulation of
gravitationally attracted particles running simultaneously with the SixTrack simulation.
The users were very satisfied with the graphics and thought it was the most visually pleas-
ing of the different BOINC projects (see the forums at [13] for user comments). Though the

17Like credits and percentage of current work done.

36

3.6. RESULTS FROM LHC@HOME

screensaver actually had no physical relation to the simulation, it still sparked many dis-
cussions on the properties of the LHC. The screensaver was therefore a success in both our
goals.

3.6 Results from LHC@home

Setting up a PRC project is a lot of work and it is not the only demanding task, keeping a PRC
project running also takes a lot of work, but it is well worth the expenditures. During the two
months the LHC@home project ran, from Sept 1 until Nov, we amassed work equal to 61.6
years of CPU time18. To supply this we used two of CERN’s discarded server machines both
of them with slower processors than the average of the donated machines, to finish a job that
would otherwise have required us to buy more than 360 dedicated machines. In figure B.1 we
can see that there is potential for even larger gains. We only slowly increased the amount of
users we allowed to join the project to see how the servers behaved. This was a decision made
by our supervisors at CERN to avoid bad publicity. If we had allowed the maximum users
from the beginning we would have been able to process much more data. Another problem we
faced was that the physicists could not supply enough data to keep the queues populated. The
process of creating new jobs was not automated enough and demanded more user interaction
than there was available manpower from their side. This was not a problem, because they
got all the studies done they wanted, but simply an indication that the LHC@home system
is able to deliver much more CPU time per real time than what we got from it.

3.6.1 Donated Platforms

One aspect of creating a PRC project is deciding on a platform for the application. The
application will often already exist and be designed for whatever platform you have locally.
Since this, at CERN, would almost always be some type of UNIX system, the application
would be written and compiled for this. SixTrack for example was written in Fortran to be
run on the Linux batch clusters at CERN. It is therefore interesting to have an idea of what
can be expected of the prevalence of the different platforms donated to a project. From the
beginning we wanted to have a Windows version of SixTrack because we believed it to be
the most widespread OS. Although Linux users have a reputation for being more interested
in science and more knowledgeable about computers, we did not expect this to have a large
influence on the ratio of Linux users to Windows users. From the table in B.2 we see that the
machines offered for use in LHC@home are comprised of 91.6% Windows machines and 7.8%
linux. It is therefore necessary for the application to run under Windows to really utilize the
full potential, just like we expected. These numbers may be skewed a bit because we only
offered a Linux and a Windows version. There may be more machines of other types, but
they did not bother to join because they would not be able to do any work. We do not believe
that the numbers are significantly off, mainly because they seem follow the general relative
prevalence of the different operating systems on desktop machines.
We will therefore recommend, to anyone setting up a PRC project, to create applications
that support Windows, Linux and MAC in that order of importance. Although the group of
Macintosh users may seem very small, only 0.5% , compared to the other operating systems,

18This is the pure number adjusted for the fact that we calculate results at least twice because we do not
trust the results from BOINC.

37

3.6. RESULTS FROM LHC@HOME

we will still recommend supporting a version for them for three reasons. Firstly, we believe
the amount of MAC users may be bigger than our numbers may suggest. We stated on the
LHC@home webpage that we would not support MAC, yet 0.5% of the machines that attached
where MAC. Secondly, the MAC community seams very eager to join. This means that the
community will offer to help develop and test the application. The Advanced Computation19

group of Apple Computers even offered us their help in porting SixTrack to the MAC OS
X platform. Porting the application to MAC therefore seems to be relatively easy. Finally,
having a tightly knit community can lighten the load of running the project. They will very
often help each other solve problems and post these solutions to the projects forums. We
observed this behaviour in our group of alpha testers at LHC@home, they were very helpful
in answering bug reports and explaining our decisions to do things one way or the other to
the other users, thus lightening the administrative burden on us.

3.6.2 Keeping the Users Happy

Another manpower-intensive aspect is keeping the contributers happy, so that they keep
contributing. This includes adding a pretty screensaver that the users like. We say add because
very few applications will have graphics included when they were destined for execution on
a cluster. It is also important to create a community that the users enjoy, this will keep
them interested in the project. BOINC’s way of doing this includes discussion forums and
user rankings. These have to be monitored daily because the users will get annoyed if their
requests for help are not reacted upon. Many annoyed users do not just leave, but they try to
get others to leave as well. As an example we decided on rules for the Forums, among these
were one stating that all communication in the ”Problems” forum had to be in English. This
would make it much faster for us to read and reply and the answers would be usable by most
of the other users as well. This would keep us from having to answer the same questions in
many different languages. One user got so angry because of this rule that he sent us emails
threatening us and he encouraged people to leave the project through the forums. It took
quite some time explaining to him why the rules where a good idea and not an attack on
him or his particular language of choice. Handling problems like this is both difficult and
time consuming, but a very important aspect of running a PRC project. People might leave
because they sympathize with the complaining user, or even if they do not they might leave
if they feel the problem is handled incorrectly.

3.6.3 Failure Rate - the Dreaded Tail

One of the biggest drawbacks of PRC is the relatively high probability of a job failing in
some way. In BOINC this problem is lessened by running the same job on many machines,
three being the default. The best case for a failure is if the job fails and that the failure is
reported to the server. The server will then immediately create a new copy of the job and
run it on another machine. Thus only delaying the final result with the time the job took
to fail. The worst case is if there is a communication error or the job fails, but this is not
communicated to the server. In this case the server will keep waiting for the answer to come
back until a deadline is reached, normally two weeks after the job is distributed. Although
distributing more copies of the job than needed lowers the rate of failure (for the final result
not individual jobs), it does not eliminate the problem. If two of the three jobs fail we are in

19The group in charge of scientific computing issues.

38

3.6. RESULTS FROM LHC@HOME

the same situation as if we had only distributed the two jobs needed for a quorum.
To analyze how much of a problem this is in practice we chose a representative study that was
run on LHC@home. The data on the ”v64lhc100proeigth” study can be found in appendix
B.4. It consist of 16009020 results of which 4% fail and 9% time out. A time out seems to be
equally likely across our supported platforms, but the Linux client fails more than twice as
often as the windows client, 10% vs 4%. This probably means that we have an undiscovered
bug in our Linux version of SixTrack. Under the assumption that these time-out errors are
independent, these failure rates mean that there is a 0.8% probability that a WU will have
to wait for one time-out period before finishing. This might not seem like a high probability,
but this study consist of 35362 WUs. Therefore 264 WUs will have to wait at least two weeks
for a result.

0

1000

2000

3000

4000

5000

6000

7000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

re
su

lt
s

time in seconds

the validation of results from v64lhc1000proeight

last result done at 2864743 sec

Figure 3.2: The time to finish a study.

Graph 3.2 shows the distribution of the time it took to finish the WorkUnits of this particular
study. It displays the amount of WUs that finished within a given time interval. For example
6,903 WU finished within 50,000 and 100,000 seconds after they were issued. The actual value
used is not the finishing time for the WU because this is not stored anywhere in the database.
We instead use the time at which the result that was chosen as the canonical result was
returned to the server. These two values are not necessarily equal, because the transitioner
and validator are only run once in a while. So the real time value would be a little bit larger.
The processing time we see in the graph is more akin to minimum time, but that is fine for
what we want to show; That the majority of WUs are finished within a reasonable amount
of time, but there is a tail of WUs that can take a very long time to finish. We see that while
almost 90% of the jobs are finished after 11 days, the final WU is not finished until after 33
days. This is very annoying for the physicist, because he needs all the results before he can
do postprocessing. He can see that 90% of his jobs are done and expect his study to finish

20Only results associated with a WU for which a canonical id has been found are considered. When a WU
reaches ten failed results it is discarded because it is very likely that the job crashes with that input.

39

3.7. THE FUTURE OF LHC@HOME

soon. He would normally use a dedicated resource and therefore expects that the last jobs
should finish within a tenth of the time already spent and not two times as long. The bridge
from BOINC to the Grid should be able to ameliorate this problem. It is based on the work
of Chris Kenyon and it will be covered in greater detail in chapter 5.

3.6.4 Benefits for SixTrack

The increased compute power available to the SixTrack group allowed them not only to
finish their studies in record time, it also allowed them to run studies they would never have
considered before. Many of the studies were run with a tenfold increase in the number of
turns, which helps study the long term stability of the beam. They were also able to study
the effect of the angles of the particles’ initial velocity on the simulation. Because of time
concerns, only a few standard angles are normally used in a study. It was assumed that if
these angles were chosen representatively enough, the end result would be the same as with
many angles. With LHC@home they were able to test this hypothesis in depth.
Running SixTrack under BOINC meant that it was run on a much more diverse set of machines
than was the case at CERN. In the first instance this led to many discrepancies in the results,
but these will be studied to understand what effects are caused by the physics and what are
caused by the numerical inaccuracies in software and hardware.
LHC@home delivered more than 600,000 finished jobs to SixTrack during our public run.
For a comparison CPSS has delivered 200,000 finished jobs during its lifetime, which is more
than a year. This means that LHC@home has delivered more than three times the amount of
results in a quarter of the time as CPSS has. Furthermore the complexity of the jobs run on
LHC@home has been much higher.

3.7 The Future of LHC@home

Since the middle of November 2004 the LHC@home project has been shut down for main-
tenance. It is the plan that it will be ready to run again sometime during February 2005.
During this time the physicist have gone over the results and devised new studies to confirm
and extend the series run in 2004 as well as including new and more refined physics models in
the simulation. Eric McIntosh has used this time to fix some minor bugs that were found in
the checkpointing code of SixTrack. He has also been able to track down the small numerical
differences that sometimes occurred and which lead us to change the validator, see section
3.5.3 on the validator. The problem was that a few standard math library functions(for ex-
ample exp the exponential function) returned results that were a bit different on different
platforms. Eric McIntosh has worked together with the people in the Arénaire project at the
École normale supérieure de Lyon. They have developed a new math library. They hope it
has solved the problem and are at the moment running tests on the LHC@home project.
At the end of the project, we experienced a lot of performance issues with the database server,
so the LHC@home hardware will also be upgraded during this period. The newest types of
server machines are not put directly into production use at CERN, but are tested for a period
of time to measure the stability. Luckily, the LHC@home project has been chosen to be a part
of this test, so we can exchange our deprecated servers with some of the newest and fastest,
and we hope this will increase the amount of users the system is able to handle.
The positive result of the project which was initially an experiment led by a small sub group
of the IT division at CERN has impressed many people at CERN. So the decision has been

40

3.8. SUMMARY

taken to make BOINC a more permanent facility at CERN. BOINC will probably be im-
plemented as one of the services the IT division offers. This means that an experiment can
approach the IT division and have their simulations ported and run through the IT divisions
BOINC servers.

3.8 Summary

In this chapter we described how we set up the LHC@home project at CERN. We chose the
CERN application SixTrack to be the application for LHC@home. We made a call translation
module that allows Fortran programs to use BOINC, because SixTrack is written in Fortran.
This module is now a standard part of BOINC. The project was a success, far outstripping
the other resources available to SixTrack. It also showed the shortcomings of a PRC system.
The unreliability of a PRC meant that although the throughput is very large, the finishing
time of a particular study can be very long. For a representative SixTrack study we saw that
the last 10% of the jobs took three times as long to finish as the first 90%. The project is now
being turned into a permanent facility at CERN, who hope that it will also be a significant
resource of computational power for other CERN applications. We address these two concerns
later in the thesis. In chapter 5 we will supply a method for solving the problem of very long
running jobs using the Grid. Then we design a general way of submitting jobs to BOINC
through the Grid in chapter 6. This will remove the need for porting applications to BOINC,
and is therefore a possible computational resource for any CERN application. However, we
first need to introduce the Grid concept and the CERN specific implementation. This is done
in the next chapter.

41

Chapter 4

The Grid

This chapter first deals with the concept of a Grid, defines what constitutes a Grid and
explains about ’the Grid’. The concept of a virtual organization is discussed as well as the
current status of Grid technologies.
An important building block in most of the Grids today, called the Globus Toolkit is discussed
after the introduction of the Grid concept. The discussion is mostly focused on version 2 of the
Toolkit because the LHC Computing Grid version 2(LCG-2), which we will use to constitute
the Grid-side of the bridges to and from PRC, makes use of this version. A short discussion
of the newest version of the toolkit, version 3, is also included for the sake of completeness.
After discussion of the toolkit we introduce the LCG-2 and describe a selected set of the
systems forming the infrastructure of the Grid. In this section we focus on tools from the
Globus toolkit used in the LCG-2 and specifically on deviations from recommended usage of
these tools.
This chapter together with chapter 2 should provide basic understanding of Grid Computing
and PRC in general as well of LCG version 2(LCG-2) and BOINC. This knowledge should
render it easier to understand chapters 5 and 6 dealing with the two bridges.

4.1 The Concept

Grids, computational grids that is, take their inspiration from power grids. Power grids enable
quick and easy access to power. The users do not have to consider where the power comes
from and how it actually gets to the outlet. Architects for computational grids imagine the
same properties for compute power instead of electrical power. They imagine vast quantities
of computers connected via a large network, possibly the Internet, to form a worldwide com-
putational grid. Users wanting compute power then ’plug in’ to the Grid and use the resources
as if they had a supercomputer of their own right next to them. Compute power is not the
only resource that the Grid is supposed to offer; Storage of all kinds of data including pro-
grams is also envisioned. The Grid can be thought of as a very large virtual supercomputer.
All the details of finding available compute power, finding the needed data, transferring data
and applications to the actual computers doing the computations, is to be handled by the
software running on the machines forming the Grid, all of this totally transparent to the user.
The observant reader noticed the word ’imagine’ in the sentences above and this word means
that the Grids of today are not quite as developed and commonplace as power grids.
The word ’Grid’ is a very hyped word and sometimes it is easy to suspect that it is being used

42

4.1. THE CONCEPT

to attract funding or to sell a product, which in reality has little to do with computational
grids. This leads to many different definitions of what a Grid is and greatly increases the
difficulty of getting to the bottom of the concept. From the many definitions of a Grid we
have chosen one, which we think is the best. It is a three point checklist by Ian Foster [17]: A
Grid is a system that:

1. Coordinates resources that are not subject to centralized control.

2. Uses standard, open, general-purpose protocols and interfaces.

3. Delivers nontrivial qualities of service.

If we use this definition on BOINC we see that it is clearly not a Grid since it does not
use standard general-purpose protocols and does not deliver nontrivial qualities of service,
although it coordinates resources not subject to centralized control. Likewise if we use it on
Grid MP from United Devices and OfficeGRID from MESH Technologies we see that they
too fail the second point and possibly also the third.
Now we have a definition of a Grid, but what about ’the Grid’? The Grid is envisioned to
become the standard among Grids like the Internet is the standard among internets, and like
the Internet this will probably be achieved by standardizing the protocols the different Grids
use, thereby opening up for the possibility of connecting them together and creating one big
Grid, an inter-Grid.
The challenges when building a Grid are numerous. Many of them arising from the problem of
sharing resources across organizational boundaries. Users from a given organization must be
able to safely and without effort run programs and store data on computers within a different
organizational domain. This involves making a standard system of job submission and, be-
cause of the different organizations with their different hardware and software, an execution
system capable of running jobs on many different subsystems. It also involves implementing
security without centralized control, since the different organizations are independently man-
aged, otherwise it would not be a Grid according to the definition above. Knowing about the
existence and status of available resources across the entire Grid, again across organizational
boundaries, in order to use these resources and to use them effectively is needed as well. These
challenges all have to be met while attempting to make the use of the Grid as easy and as
transparent to the users as possible.
An often used term in connection with Grids is a Virtual Organization(VO), which is a collec-
tion of individuals, institutions and/or organizations all sharing a common goal. To reach this
common goal the members of a given VO share their resources in the form of compute power,
data, applications etc. VOs are also a way of organizing users of a given Grid to lighten the
administrative burden. As an example of a VO the people, who come from all over the world
and many different institutions, working on the ATLAS experiment are grouped together to
form a VO on LHC Computing Grid. Likewise people from the other LHC experiments are
grouped together to form VOs on the LHC Computing Grid.
Most Grids today are testbeds and are used by computer scientists to implement and test
new ideas within the field of grid computing. There are a few operational Grids today and
they are mostly used to connect research institutions (physics research for instance) and their
machines. They are used by the scientists of the collaborating institutions and not by the
common public as opposed to the Internet.
The software used to ’glue’ the many computers of a Grid together into a virtual super-
computer, is often referred to as middleware since it sits between the applications and the

43

4.2. THE GLOBUS TOOLKIT

operating system. Most middleware today is based on the Globus Toolkit, which is the topic
of the next section.

4.2 The Globus Toolkit

The Globus Toolkit(GT) is a set of open source tools, in the form of services and software
libraries, that can be used to create a computational grid. It is not a complete Grid infrastruc-
ture, but instead components identified by the Globus organization as basic building blocks
of value to practically any Grid. The tools offer functionality such as security, data trans-
fer, data management, resource management and resource discovery. Most of the tools are
generic and can be connected to components specific to a given Grid by writing a small piece
of glue-software to interface with the API of the given tool. As stated earlier the toolkit is
practically the standard when it comes to building a Grid infrastructure. It is being used
by, among others, the Grid Physics Network(GriPhuN), Particle Physics Grid, the Network
for Earthquake Engineering and Simulation(NEES), the Earth Systems Grid, NorduGrid and
most importantly in LCG-2, which is the Grid we will use when building the bridges. LCG-2
uses version 2 of the toolkit, which is why the following discussion of the tools in the toolkit
is mostly targeted at version 2, although a newer version of the toolkit is available. Since it is
beyond the scope of this thesis to discuss the entire toolkit in detail only the most important
and interesting details and tools are discussed.

4.2.1 Grid Security Infrastructure

The Grid Security Infrastructure(GSI) offers security measures needed in basically any Grid.
One of these measures is authentication of the different elements of the Grid including the
users of course. Since entering a password every time communication is initiated is very te-
dious, GSI supports ’single sign-on’. This means that a user enters his password once and then
has access to potentially all Grid elements. ’Single sign-on’ is greatly complicated by the fact
that Grids consist of many separate organizational units making a centralized security system
impractical. Instead GSI uses public key cryptography for authentication and certificates1 for
establishing trusts. GSI takes it one step further and introduces proxy-certificates, a certifi-
cate representing another certificate. Proxy-certificates can be used to delegate control, for
instance they can be used to allow a computation to request other Grid resources by issuing a
proxy-certificate from the user supplied certificate and to use this proxy to request the extra
resources, hence allowing the computation to act on the user’s behalf. To limit the security
risks of proxy-certificates, these usually have a very limited lifetime. Proxy-certificates can
also be issued from proxy-certificates since there is always a link to the original certificate and
thereby a link to the certificate authority2. Because of the limited lifetime, proxy-certificates
do not need to be encrypted allowing for them to be used without entering a password. This
can be used to offer the ’single sign-on’ since users can create a proxy-certificate from their
original certificate (entering their password to decrypt the certificate) and then use the proxy-
certificate to authenticate with the Grid resources.
Once authenticated a shared key can be used to encrypt the communication between Grid

1For more information about certificates and the way GSI uses them we refer to http://www-
unix.globus.org/toolkit/docs/3.2/gsi/key/index.html.

2A certificate authority is an entity issuing certificates thereby for the certificate holders identity. The
certificate authority has to be trusted by the authenticating entity in order for it to trust the certificate holder.

44

4.2. THE GLOBUS TOOLKIT

elements and if the overhead of encryption is not justified, communication integrity3 is offered
instead.

4.2.2 GridFTP

GridFTP is a data transfer protocol intended to be used in Grid environments. GridFTP is
a secure, reliable, high performance data transfer protocol designed for wide-area networks
with a high bandwidth. It is as the name hints based on the well-known FTP protocol, which
has been extended to offer features specifically needed by Grids. GSI is used to secure both
the control- and the data channel of the FTP communication and parallel data transfers has
been added. Parallel data transfer involves splitting a given file into chunks and transferring
the chunks simultaneously; This opens up for a potential performance increase because the
chunks can be transferred from different servers that stores the same file. Even if only one
copy of the data is available, parallel data transfer still has the potential to offer better perfor-
mance on wide area networks because the individual data streams can be routed individually
thereby using multiple WAN links instead of a single link.
GridFTP also supports third party data transfer allowing for data transfer between to servers
without going through a middleman, but controlled by a middleman. This third party data
transfer is of course also secured by GSI.
Since entire files are not always needed by Grid applications support for a partial transfer of
a file is also part of GridFTP.
Reliable data transfer is also needed in Grid environments, therefore GridFTP includes fea-
tures to restart failed transfers.

4.2.3 Replica Management

Grids are not only used to give access to compute power, but also to store data as mentioned
previously. Often multiple copies of the same data, called replicas, are stored on the Grid for
the sake of performance4, robustness and scalability. Replica management manages the data
and can select the best suited replica(s) in a given situation. It provides the ability for users
to register files, enabling other Grid users to find them, create and delete replicas and to find
files and replicas as well as information about the resource storing them.
Replica management uses another Globus component called the Replica Catalog to actually
store the meta data. The Replica Catalog stores mappings between logical filenames and
the physical file names which are often stored as URLs, which can be used to access the
files. This mapping scheme allows the physical filename to change, i.e allowing the file to be
moved, and it allows for better performance because applications are not bound to a specific
instance of data, but the best replica can be chosen at runtime. The Replica Catalog also
stores information about the resource actually storing the replica and this is the information
used by the Replica Management to select the best suited replica(s). The Replica Catalog
groups files into logical collections, probably to improve scalability. The Replica Management
system is not distributed and therefore has scalability issues.
Replica management uses GridFTP to transfer data.

3Data cannot be changed in transit without being detected.
4Access to local copies is often faster than access to non-local copies.

45

4.2. THE GLOBUS TOOLKIT

4.2.4 Grid Resource Allocation and Management

To be able to run jobs on a Grid, mechanisms to start and monitor jobs on remote machines
are needed. Grid Resource Allocation and Management(GRAM) offers such mechanisms in
a secure way by using GSI. Via GRAM it is possible to submit, cancel and check the status
of remote jobs. A GRAM client, which is not a part of GRAM, but uses the GRAM client
API5, is used to interact with the remote machines. To submit a job to a remote machine the
client needs a specification of the job, which among other things names the remote machine
on which to run. This means that GRAM does not include any scheduling logic, it only runs
jobs on already identified machines.
The remote machines run the server component of GRAM called the Gatekeeper, which the
clients connect to. Once connected, GSI is used for authentication and once authenticated
and authorized the Grid user, who submitted the job, is mapped to a local user, which runs
a GRAM job manager managing the given job. The job manager interacts with the local job
scheduling system, which could be any system such as for instance Condor6, to run the job. It
is very important to note that the job manager does not directly start the job on the remote
machine, it offers a general API which local schedulers must implement in order for GRAM
to use them. The job manager runs while the job is active and can be queried by the client
in regards to any changes in the job status, such as active (executing), suspended, done, or
failed.
GRAM also takes care of staging7 files using Global Access to Secondary Storage(GASS).
GASS, which is also a part of the Globus Toolkit, is designed to enable easy access to remote
files possibly stored on the submitting machine. It works similarly to the remote system calls
under the standard universe of Condor, but not identically. As part of an open call the entire
file is transfered in and as part of a close call the file is transfered out.
To sum up GRAM offers mechanisms for managing jobs on already identified remote machines
that have a job submission system implementing a specific API from GRAM.

4.2.5 Monitoring and Discovery Service

The Monitoring and Discovery Service(MDS) is a system for publishing and querying the
status of resources and their configuration. Together with GRAM they can be used to create
a scheduler for a Grid.
The design idea of having a standard service in the middle able to connect to different sub-
systems and a Grid-specific super-system, as was used in GRAM, is also used in MDS. MDS
consists of three major components; the Grid Index Information Service(GIIS), the Grid
Resource Information Service(GRIS) and Information Providers (IPs). If we start from the
bottom the IPs are interfaces, which receive information about the resource from resource-
specific monitoring systems. Some IPs are readily available, others will have to be written for
the specific resource. The information about the resource is passed on by the IP to the GRIS
using a standard API. Usually both the IP and the GRIS run locally on the resources, but
the GIIS does not. It collects the information from several GRIS enabled resources to allow
searching through the information to find a suitable resource. A GIIS can connect to another
GIIS introducing several levels of GIISes, for instance a Grid could have one GIIS per site and

5The client is most likely some sort of scheduler specifically developed for a given Grid such as LCG-2 or
NorduGrid.

6Or BOINC for that matter. See chapter 6 for more information on this subject.
7Transferring files to and from the remote machine.

46

4.3. LHC COMPUTING GRID

one Grid level GIIS. This along with caching of information throughout the system makes it
quite scalable.
MDS is a LDAP8-based service and data is organized in schemas. It supports two schemas, the
MDS core schema, which is a schema containing basic information, and the Grid Laboratory
Uniform Environment(GLUE) schema, which is a joint effort between some Grid projects to
define information needed to represent Grid resources. The information offered by MDS about
resources could be load status, CPU, disk, memory and network information as well as OS
information depending on the information provider.
GSI can be used to secure the system and GRAM can be configured to publish information
about queues and job status on the local resources to MDS.

4.2.6 Globus Toolkit 3

Version 3 of the Globus Toolkit (GT) introduces web services to the toolkit. Explaining web
services is beyond the scope of this thesis.9 Web services are brought into the toolkit in an
effort to use standard mechanisms to publish and discover Grid resources instead of the pro-
prietary mechanisms of GT version 2 in order to improve generality and flexibility.
The Open Grid Services Architecture(OGSA) introduces the notion of a subclass of web ser-
vices called grid services, and defines a set of interfaces and conventions which these must
follow. Since a grid service is a web service, its interfaces are defined using the Web Services
Description Language(WSDL), its presence is published and discovered using the Universal
Description, Discovery & Integration(UDDI) system and data are structured using the eX-
tensible Markup Language(XML), all of them standard web service technologies.
The Globus Toolkit version 3(GT 3) provides tools to create grid services and even offers
some, many of them replacing the GT 2 tools. The Reliable File Transfer(RTF) service pro-
vides just that by using GridFTP. The Replica Location Service(RLS) replaces the Replica
Management of Globus Toolkit version 2 and provides better scalability by distributing the
service. Web service versions of GRAM and MDS are also part of the toolkit.
The Community Authorization Service(CAS) is also part of GT 3 and has been created to
reduce the administrative burden of assigning privileges to Grid users. Instead of having every
resource provider specify individual privileges for every valid Grid user, users are grouped into
communities and these communities are then assigned privileges to the given resource. Each
community is then in charge of assigning privileges to the individual users of the community
and issuing GSI certificates to its members, who use the certificates to gain access to CAS
managed resources.

4.3 LHC Computing Grid

Version 2 of the LHC Computing Grid(LCG-2) is the Grid we will be using when creating
bridges between PRC and Grid computing, and for that reason we will present an overview of
this particular Grid in this section. The LCG-2 is a worldwide computational Grid targeted at
providing compute power and storage space for the LHC. The LCG-2 is probably the largest

8Lightweight Directory Access Protocol(LDAP) is a set of protocols for accessing information in directories.
It is based on a subset of X.500, also a set of protocols for directory access, but it is simpler and supports
TCP/IP. The actual data could be stored in a standard relational database since the protocol only specifies
how to access information.

9Interested readers are referred to ’http://www.w3.org/2002/ws/’ for information on Web Services.

47

4.3. LHC COMPUTING GRID

computational Grid in the world when measured by the number of sites. In the LCG-2’s case
it spans about 115 sites with a total of about 11.000 machines on average and this number is
expected to rise to about 100.000 by 2007 when the LHC goes in to operation. The biggest
task of the Grid will be to process and store the incredibly large amounts of data coming
from the LHC experiments once the collider is operational.
LCG-2 takes its software components from many places and like many other Grids it is based
on the Globus Toolkit, specifically version 2 of the toolkit. It is composed of a number of sys-
tems: the Workload Managements System(WMS), the Data Management System(DMS), the
Information System(IS), the Authorisation and Authentication System and the Accounting
System. The infrastructure of LCG-2 is large and complex and it is beyond the scope of this
thesis to describe the entire system in detail. We will therefore only describe the three most
interesting systems, the WMS, the DMS and the IS, below.

4.3.1 The Workload Management System

The WMS system is shown in figure 4.1. To submit jobs to LCG-2 users log in to a machine,
which has the WMS User Interface(UI) installed. Once jobs have been submitted, the UI
machine connects to the Resource Broker(RB). The RB takes care of scheduling, submitting
jobs to remote machines, transferring files, and logging.
The RB uses GSI to authenticate users and once authenticated it copies the input sandbox,
which is a collection of files stated by the user as present on the UI and needed for the job, to
its local storage. It uses the matchmaker, the IS and the Replica Location System(from the
DMS described in section 4.3.2) to find the best suited resource for a given job taking many
points into account such as user specified constraints, queue lengths and replica localities.
The matchmaker works according to the same principles as the matchmaking mechanism of
Condor and it also uses ClassAds. Condor-G is used to submit the jobs to the Computing
Element(CE) that is found to be best suited. Along with the job, a monitoring job called the
grid monitor mentioned in section 2.3.4, is also submitted.
The CEs run the gatekeeper, which accepts incoming jobs from Condor-G and starts a GRAM
job manager. The job manager submits the job to a site specific batch system like Condor,
LSF10, or OpenPBS11. In LCG-2 the job manager is only used to submit and cancel jobs,
not query their status. This task is carried out by the grid monitor submitted along side the
jobs as mentioned above. The reason for using the grid monitor, and not the job manager
to monitor jobs, is performance. The job managers use a lot of resources on the CE since
the gatekeeper starts a job manager for every job and these job managers run until the jobs
finish. The grid monitor on the other hand can monitor all the jobs from the same user on
a CE and the job managers can be instructed to exit as soon as jobs have been submitted
to the local batch system, resulting in a much smaller load on the CE. The actual machines
running jobs are called Worker Nodes(WNs) in LCG-2.

10For information on LSF the reader is encouraged to visit http://www.platform.com/products/LSF/.
11For information on OpenPBS the reader is encouraged to visit http://www.openpbs.org/about.html.

48

4.3. LHC COMPUTING GRID

User Interface

Resource Broker

Worker Node

Job submission Querying status Retrieving output

Gatekeeper

Job manager

Perl script JM grid monitor

Batch System

Computing Element

User job

Figure 4.1: The Workload Management System of LCG-2. Modified from [29].

4.3.2 The Data Management System

The DMS consists of the Replica Location System(RLS) and Storage Elements(SEs). The
RLS is queried to locate data and retrieve metadata as well as information about the SE
actually storing the data.
Storage elements are computers with access to large amounts of data storage, which in some
cases are large disk arrays and in others multilevel storage systems with tape robots at the
lowest level. These storage elements run a GridFTP server, which makes the storage available
to Grid users once they have the physical file name(PFN) of the data in question. The PFN
is discovered by querying the RLS, which contains mappings from logical file names(LFNs)
to PFNs. The RLS system used in LCG-2 is not the one from GT3, in fact nothing from
GT3 is used in LCG-2. The GT3 RLS was developed in collaboration with EDG12, but their
paths split and two versions of RLS were implemented. LCG-2 uses the EDG version of the
RLS, which is also designed to run as a distributed service. This is however not the case in
LCG-2, where the system is based on a set of central servers, one for each VO on the Grid.
As mentioned above the RLS is used by the matchmaker in the WMS to find the best suited
CE for a given job.

12The European DataGrid project(EDG) is a Grid project commissioned by the European Union to develop
Grid technologies.

49

4.4. SUMMARY

4.3.3 The Information System

The IS of LCG-2 is based on the MDS system from GT2 and it uses the already mentioned
GLUE schema to organize the information. The MDS system has however been modified to
deal with issues of scalability and robustness. Like the standard MDS the IS uses information
providers to provide information to a GRIS, and the GRIS relays this information to a site
level GIIS, but there is no regional or Grid level GIIS in the IS. The overhead of the regional
GIIS-system was lowering performance and the Grid level GIIS was unstable when collecting
information from many sites and being queried by many users and RBs at the same time.
These shortcomings mean that there is one GIIS per site in LCG-2 and none of them are
connected to other GIISes. To serve as the Grid-level information service instead of the GIIS,
LCG-2 has implemented the Berkeley Database Information Index(BDII). The BDII consists
of two LDAP-servers, where one of them contains a read-only database and the other a write-
only database. The system works by doing queries from users and RBs on the read-only
database, while the write-only database is being updated with information from the GIISes.
Once updated the two servers change roles and user queries are being done on the recently
updated and former write-only database. This improves scalability and robustness.

4.4 Summary

The concept of a computational Grid in its purest form, is the idea of access to vast quantities
of compute power and data storage as easy as todays access to electrical power. This idea
has not been turned into reality yet, but less pure versions do exist. The Grids of today
connect many organizations and offer a high quantity of compute power and storage. The
infrastructure of Grids have to solve the problems of job submission, security and discovery of
the existence of resources and their status all on resources not subject to centralized control.
To aid in the task of building a Grid, the Globus organization has made a set of tools available.
These tools include a security system, a safe data transfer protocol, a system for managing
data, a system for submitting jobs and an information system keeping track of resources and
their status. The toolkit is used as a basis for the Large Hadron Collider Grid version 2(LCG-
2), but because of performance issues, some of the tools are not used exactly the way the
Globus organization envisioned. Changes to the usage have been made to the job submission
and monitoring system by using parts from Condor-G, which is described in section 2.3.4,
and to the information system by using a custom made top level LDAP service.

50

Chapter 5

The BOINC-Grid Bridge

In this chapter we deal with connecting PRC and Grid Computing. We build a bridge from
a PRC platform to a Grid allowing PRC jobs to run on Grid resources. We use BOINC as
the PRC platform and LCG-2 as the Grid. The idea behind the bridge is to improve the
overall usefulness of a PRC platform. The inspiration for the bridge, the work by Kenyon and
Cheliotis, is discussed.
The extended BOINC system is introduced and design decisions are discussed. Afterwards
the implementation is described and the results from it presented. We also discuss possible
benefits for both BOINC and LCG-2 in having such a bridge. Towards the end of the chapter
we discuss limitations inherent in the implementation and we present ideas that would improve
it. Lastly we discuss features not present in LCG-2 that would make it more suitable for the
purpose of bridging with a PRC platform.

5.1 Creating a PRC System With Hard Guarantees

We got the idea of building a bridge from BOINC to Grid from the work by Kenyon and
Cheliotis[32]. They describe how it is possible to guarantee, what they call, a hard stochastic
quality of service (HSQ) using a mix of cycle-scavenging and dedicated resources. HSQ is a
set of statistical properties of QoSs that are guaranteed with certainty. An example of a HSQ
could be that we guarantee that the user has an 80% chance of getting 5-6 CPU days and
a 20% chance of 4-5 CPU days during the next 3 hours. A single user may be unlucky and
only get the lowest amount of service, but the distribution is guaranteed. The HSQs that the
method supports is of course more complicated than the simple example above. It can also
be used to guarantee a distribution on the individual length of CPU slots. A CPU slot is an
uninterrupted session on a machine. This is a very important ability, because if you have 3
jobs lasting 20 minutes and you are guaranteed 1 CPU hour, you would be satisfied with one
slot of an hour or 3 slots of 20 minutes. However, while 60 slots of one minute would also
honour the guarantee of 1 CPU hour, it would not allow any of your jobs to finish.
They argue that the concept of HSQ has merit also in a commercial setting, using the example
of Chicago’s Mercantile Exchange’s Random Length Lumber. This lumber is sold with a
guaranteed distribution of the length, but the actual length of the individual pieces of lumber
is not guaranteed. They therefore believe that it is possible to sell computer resources based
on the same principles.
The method is based on using dedicated resources to help shape the actual distribution of the

51

5.2. BRIDGING FROM A PRC PLATFORM TO A GRID

unreliable cycle-scavenging resources. Their architecture consists of an HSQ Controller that
is able to submit and monitor jobs on both a cycle-harvested resource(CSR) and a dedicated
resource. A dedicated resource in their terminology is a reliable resource under the sole control
of the HSQ Controller. This definition is unnecessarily strict. Their method will still work if
the dedicated resource is able to deliver a guaranteed QoS and the possibility to reserve this
QoS or a guaranteed minimum QoS available at any point in the future. The HSQ Controller
accepts or rejects incoming contracts1 based on whether it can be honoured with the available
resources. The idea is to use cycle-harvested resources until the point is reached where the
contract has exactly enough time left to be able to finish on the dedicated resource. The
HSQ Controller continuously monitors the available resources on the dedicated resource and
the status of a contract, updating it whenever one of its jobs finishes on the CSR. Once a
contract has no spare time left, i.e. it can exactly be delivered at the deadline by the dedicated
resource, the HSQ Controller transfers the execution of the contract’s jobs to the dedicated
resource. This is why we demand that if a dedicated machine is not under the sole control
of the HSQ Controller, we have to have a reservable or minimal QoS and not just a QoS.
Otherwise it is possible that the HSQ Controller checking if there is spare time left given
the QoS of the dedicated resource, decides that there is and keeps the jobs on the CSR, but
immediately after the QoS could deteriorate to a level where the contract could no longer be
honoured.
They show that the method described is a viable way of providing HSQ for a CSR, with only
a small2 requirement for dedicated resources.

5.2 Bridging From a PRC Platform To a Grid

Our project does not have any of the economical aspects of the article, but our plan is to
use simplified ideas from this article to help resolve the problem of the unreliability of PRC
resources. We saw an example of what this unreliability means for projects like LHC@home in
section 3.6.3, where a small portion of the jobs took an extraordinary long time to finish. The
idea is that we use the Grid as our dedicated resource to deliver a HSQ from a PRC resource.
Unfortunately a Grid is not a dedicated resource, but according to Ian Foster’s definition
of a Grid it should deliver a non trivial QoS, see section 4.1. The QoS concept it delivers
might still not satisfy the requirements we set for it in section 5.1. However, we are not trying
to create a marketable PRC resource, but simply a more reliable one. We will therefore be
satisfied with a simple QoS guarantee, and therefore only be able to deliver HSQs after best
effort. Likewise we will not reject contracts we cannot honour, but satisfy them to the best
of our ability.
We replace the dedicated resource in the architecture described above with Grid resources to
enhance a PRC system. The part we have to make is the HSQ controller or as we refer to it,
the bridge. There are very few general issues in bridging from a PRC platform to a Grid, it
is mostly a matter of overcoming technical obstacles specific to a given PRC platform and a
given Grid. Generally the kind of jobs that can be run on a PRC platform are much more
limited than the kind of jobs that can be run on a Grid. Therefore PRC jobs can usually be
run on a Grid without too many problems. This is not the case the other way around as we
discuss in the next chapter. One inherent problem is the fact that PRC systems usually run

1A contract is a set of jobs with an associated HSQ.
21% - 10% based on the size of the contracts

52

5.3. THE BOINC TO LCG-2 BRIDGE

Windows applications while Grid resources usually run some form of Unix.
When it comes to security there are also very few problems. In general, the public resources
normally used by a PRC platform cannot be trusted and therefore certain measures have to
be taken. Being able to run on Grid resources, which can be trusted, these measures are no
longer necessary, but not directly harmful. However, the security of the Grid still has to be
dealt with. This probably involves mapping a set of certificates for the Grid to the set of jobs
to be submitted.
To supply QoS a suitable QoS metric must be chosen. The metric will be used by the bridge
to decide which PRC jobs are candidates for Grid execution and used to negotiate the appro-
priate QoS from the Grid.
In the following sections a specific bridge from the BOINC PRC platform to the LCG-2
platform is described.

5.3 The BOINC To LCG-2 Bridge

To supply QoS from public resources, according to our modified version of the architecture
by Kenyon and Cheliotis, BOINC needs a way to submit jobs to a Grid. In our case the Grid
is LCG-2, so the system needs a way to run jobs on LCG-2. According to the architecture
it should of course still be possible to run jobs on BOINC clients, since the entire idea is to
use as many public resources as possible and as few dedicated resources as possible. Normally
BOINC clients connect to the BOINC server and pull jobs from the job queue however this
approach will not work when trying to run jobs on LCG-2. There is no support for the pulling
of jobs on the LCG-2, only pushing is supported. Therefore the bridge has to actively push
jobs to LCG-2, which is a major break from the normal operation of the BOINC system. How
to actually run a BOINC job on a LCG-2 WN is the topic of the next section.
Choosing the suitable QoS metric is the topic of section 5.3.4.

5.3.1 Running BOINC Applications on LCG-2

BOINC applications are specifically built for BOINC. They have calls to BOINC functions
which interfaces with the core client to execute certain tasks such as file name translation.
Because of this they cannot be run unmodified without the core client3. To be able to run
BOINC WUs on the Grid, a program is needed to interface with the application and basically
do the job the core client normally does. The standard core client cannot be used though
because it connects to one or more BOINC servers and requests work etc. The object is just
to run a single BOINC WU as if it was just another Grid job, and return the result via the
normal Grid channels. For efficiency reasons one could argue that running more than one WU
per Grid job is a better solution, since the overhead of network connections, job generation
and scheduling would be distributed among the WUs in a single Grid job. However batching
WUs in this manner greatly increases the execution time of a Grid job. The matter will be
discussed further in section 5.3.4.
Using the normal BOINC mechanisms to return results would require major changes to the
server software, since results from Grid must be handled differently from normal results.
Having the bridge handle the difference the normal server software does not have to be

3Though this was the case at the time the bridge was implemented using version 4.03 of BOINC it is no
longer the case with newer versions of BOINC.

53

5.3. THE BOINC TO LCG-2 BRIDGE

changed. The matter is further discussed in section 5.3.2. Using the BOINC mechanisms
would also require allowing the client to communicate with the BOINC server to return jobs,
but not to retrieve new ones and it would require the WNs having outside network access,
which most do not. Because of these issues the Grid mechanisms of returning results will be
used.
A specially made program to impersonate the core client could be built to interface with the
BOINC applications, but since the standard core client is almost usable, we chose a different
approach. Instead of starting from scratch, we chose to make minor modifications to the
standard core client to make it act in a way that best suits our needs. These needs are to
run a single job already shipped with the core client to the Grid machine, not contact any
servers or upload any results and exit when this single job finishes or crashes (whichever
comes first. . .).
The core client is structured as a set of finite state machines each in charge of a specific
task, such as doing the computations, transferring files, or talking to the scheduler. These
state machines are also in charge of changing the state of a result4. The state machines are
repeatedly called in a loop in the core client, where they check for actions to be taken within
their area of responsibility. To disable all communication the state machines in charge of
communication were disabled from this loop. Since the communication state machines were
no longer running, additional changes were needed to simulate the normal state-change of a
result, that is from the state of no longer computing to uploaded and finally reported. Without
these changes the result would never get deleted from the state file5 of the client and it would
not exit, thinking there is still work to be done.
Normally when a result is finished the garbage collector kicks in and deletes the result since
it has been uploaded to the server. In our case this is not desirable, because the result has not
been transfered off the machine by LCG-2 yet, so the actual deleting of files in the garbage
collector had to be disabled as well.
Finally the core client has a commandline-switch that instructs it to exit when there is no
work to be done, but unfortunately this only happens when the scheduling server has been
contacted and the client has made sure that there really is no more work to be done. Since
the communication state machines are not running, the client is never satisfied that there is
no more work to be done. Minor changes to the exit code were required to fix this problem.
The core client now runs results in the state file, never communicates at all and exits without
deleting results when it runs out of results to process.

5.3.2 The Bridge Daemon

The first thing to consider is how to get the (right) jobs from the BOINC database and
run them on the Grid. The BOINC server complex is highly modularized making it possible
to split the different daemon of the complex between several machines for scalability 6, it
seemed obvious to use this idea when constructing the bridge. It was therefore chosen to
create a separate daemon responsible for doing the bridging. This way the bridge daemon can

4Each WorkUnit gets turned into multiple results because of redundancy, which means a result is actually
a job. For more information about the BOINC system consult section 2.2.

5The core client maintains a file representing the state of this particular client including downloaded files,
pending results and so on.

6Even run some of the daemons in duplicate.

54

5.3. THE BOINC TO LCG-2 BRIDGE

be run on a separate machine and avoid putting more load on the existing BOINC servers7

except for the database server which it needs access to. One of the many other possibilities
would have been to incorporate it into the transitioner, but for the sake of scalability and
modularity this solution was not chosen. It also makes it easier to enable/disable the bridge
- either add it to the list of daemons to be run in the BOINC server configuration file or not.
For each WorkUnit the BOINC server creates multiple results to represent the actual job
because of the redundant computing used by BOINC. This is important when it comes to
deciding what to do when a WorkUnit is submitted to the Grid. Creating a new result to
represent the WU executing on the Grid has several advantages; For one it is keeping in line
with the BOINC-way of doing things. It also makes it much easier to assimilate the result
and to validate incoming results from BOINC clients against the Grid result, since all of this
is already done by the server complex requiring no changes at all. For these reasons it is
chosen to create a new result for jobs executing on the Grid at the cost of database space and
performance.
When results return from normal BOINC clients, they are validated against other results
from the same WorkUnit, but WorkUnits being run on the Grid are only run once since it is a
trusted resource. Because it is a trusted resource, there is also no need to validate the results
from it. They are therefore immediately made the canonical result for the corresponding
WorkUnit, if such a result has not already been found. Making a result the canonical result
without validation can be achieved by manipulating the WorkUnit’s record in the database.
It is possible that a WU finishes through normal means while the WU is running on the
Grid. Such a WU should be cancelled to efficiently use Grid resources would. This is however
not done in the current implementation. By cancelling the jobs, the ability to validate the
canonical result against the result from the Grid is lost. This is not a big loss though since
the only possible action if the canonical result is found to be invalid is to take away the credit
from the involved users. The damage has already been done since the canonical result has
been made the final result because the assimilation has already been run.

5.3.3 The Extended BOINC System

The extended BOINC system, which includes the bridge to LCG-2 is shown in figure 5.1.
It illustrates the two ways the system has for executing the jobs in the queue, the first and
regular way involve normal clients connecting to the scheduler asking for work and once done
with the work connecting again to report the results. The second and new way is a very
different approach, instead of the clients pulling jobs from the server by connecting to it,
the server instead connects to the resource broker of the Grid and pushes jobs to the Grid,
in essence working more like a client than a server. Also instead of the clients reporting the
results automatically, the server now has to actively monitor the running jobs by polling the
logging and bookkeeping service of the LCG-2 for the status of the jobs and actively get the
results once the jobs finish. This is a major break from the normal operation of the BOINC
server complex.
The bridge consists of three major parts; the BOINC server complex, a modified BOINC core
client and the bridge daemon. The server complex is standard and was covered in section
2.2.4, the last two parts will be covered in this chapter.

7BOINC servers seems to be suffering from scalability problems.

55

5.3. THE BOINC TO LCG-2 BRIDGE

BOINC Server Complex

Execution-side

Database server

Submits a job with
a QoS request.

Daemons

Shared
memory

Scheduler

BOINC Core client

1. C
onnects

and requests
work.

2. G
ets

work.

3. W
hen fin

ished

reports
the result.

Normal Execution.

Server-side

LCG Execution.

Resource Broker

Logging
&

Bookkeeping

.

.

.

Network
Server

Globus
Gatekeeper

Computing
Element

1. Submits job to the Network server.

2. Polls for job status.

3. Gets the output from the job when it finishes.

Transitioner

Feeder

Validator

Assimilator

File deletor

Bridge

Figure 5.1: Job-execution on the modified BOINC platform, which includes the possibility of
submitting jobs to Grid resources.

5.3.4 QoS

As stated in section 5.2 we have to decide on a QoS metric. This is to be used to decide
which WUs should go to Grid on to negotiate the appropriate QoS from the Grid. However
our Grid, LCG-2, does not supply QoS in the common sense of the word. This fact could
present somewhat of a problem regarding the third point on Ian Fosters checklist as to what
constitutes a Grid. However according to Mr. Foster himself QoS contains more dimensions
than the traditional sense, including security, reliability and performance, justifying calling
LCG-2 a Grid. The LCG-2 submits jobs to the job-queue which appears to have the shortest
waiting time, therefore best effort. Most Grids of today do not supply QoS. There is work
going on in this field to provide QoS from Grid resources, but until this is a reality it is best
effort instead, which translates into best effort for the bridge as well. Readers interested in
QoS on Grid resources should consult [21] for more information. Though it does not support
QoS it is still a more predictable resource than BOINC clients and certainly a more valuable
resource and should therefore not be wasted. This still means jobs should only go to the Grid

56

5.3. THE BOINC TO LCG-2 BRIDGE

when absolutely necessary, although this is impossible to achieve in practice.
Traditional QoS metrics include response-time and average response-time for interactive sys-
tems, delay, variation in the delay (called delay jitter) and average throughput for networks,
but none of these are relevant for PRC jobs. What matters for these jobs is when the result is
ready, so this is the metric of choice. This sort of scheduling is known as deadline-scheduling.
With LHC@home the jobs were almost always grouped into studies, where each study looked
into a specific area of the accelerator’s behavior8, hence the scientists were not particularly
interested in when a single job finished, but instead when a study finished. Whether the met-
ric operates on a group of jobs or a single job the same effect can be achieved by setting the
group size to 1 in the former case or by setting the finish time of a bunch of jobs to the same
time in the latter case, therefore, for reasons of simplicity, it is chosen to operate on a single
job.
In order for the bridge to try and finish the job in time, it needs a way of figuring out when to
submit a given job to the Grid; Since our design is based on the work by Kenyon and Cheliotis
we chose to use the method they propose. However since our resources are not dedicated we
have to account for the fact that our jobs get queued. Therefore it is chosen that a job is
submitted to the Grid when the time left for the job to complete in is less than two times
the estimated time to run it on an average Grid machine. There are many problems with this
way of deciding when to submit a job. First of all, why is two times the right number? If the
Grid is heavily loaded the number might be too small to finish the job in time and if it is not
heavily loaded it might be too high causing possibly unneeded jobs to be submitted9. This
brings up the issue from section 5.3.1 about batching WUs together to form a single Grid
job. Since this would result in a much bigger job than single WU jobs it would need to be
submitted much earlier than single WU jobs, since they can and will be run on many different
worker nodes in parallel resulting in a faster turnaround. There is however one way of tricking
the LCG-2 to run a multiple WU job on several WNs. Since about 10% of the LCG-2 sites
offer and publish MPI-support a multiple WU job could be submitted as a MPI job causing
the wanted effect. There are downsides to this approach, MPI jobs are not started until all
the needed CPUs are available, possibly and very likely causing a large portion of these CPUs
to sit idle while waiting for the last CPUs to become available. First of all, this wastes Grid
resources, but it also means a greater turnaround time for all, but the last of the jobs in a
batch10. The turnaround time for all the WUs is further worsened by the fact that 90% of the
Grid resources will not be usable because of the lack of MPI support. A greater turnaround
time means a higher probability of wasting Grid resources, because it necessitates earlier sub-
mission to Grid. This introduces the probability of a WU finishing normally because of the
extended timeframe needed by the earlier submission, thereby making the Grid job a complete
waste. Batching WUs together is a good idea, since it reduces scheduling overhead, but more
importantly offers the possibility of only transferring the files common among a collection of
WUs once, thereby significantly reducing overall submission time. It does however complicate
matters quite a bit and given LCG-2’s limited support for such jobs, we chose the simpler
approach of one WU per Grid job.
Another problem is that longer running jobs get more time to use in queues than short run-

8For instance given a fixed set of amplitudes and a fixed set of seeds what happens when the angles are
varied?

9The whole point is to rely as much as possible on public resources and only use the Grid as a last option,
which means waiting as long as possible before submitting the job, but not too long. . .

10In the case of SixTrack this would not matter since the entire study is not finished until the last WU is.

57

5.3. THE BOINC TO LCG-2 BRIDGE

ning jobs, since jobs get submitted when it is estimated that the time left is less than twice
the execution time. The extra ’execution time’ is of course there because jobs usually do not
get to run as soon as they are submitted to the Grid, but spend some time queuing, but there
is no particular reason why a long running job should spend more time in a queue than a
short-running job.
The next problem comes from the estimates of the performance of an average WN and the
job’s requirements, which is exactly what it is, estimates. For the concept to be sound, the
bridge needs an estimate of the required number of floating point operations needed to com-
plete a given job11 and it needs an estimate of the performance in FLOPS on an average
WN. The machines we have seen on LCG-2 have been 1 GHz Pentium IIIs and according
to SETI Spy[14] the peak performance of such a machine is about 166 million FLOPS. We
estimate this peak performance to correspond to an average of 100 million FLOPS. Therefore
the default estimate of the performance of an average WN is set to a 100 million FLOPS.
Since this is only the default value, server administrators can consult [14] to estimate the
average performance of their machines.
The estimates are difficult to get right and there are probably many other problems with the
algorithm chosen, but since all of this is best effort and it is beyond the scope of this thesis
to develop elaborate QoS algorithms, it will do.
Instead of having the administrator of the bridge estimate the floating point performance of
an average Grid CE, it would be possible to query the Grid. The sites in LCG-2 report their
number of CPUs and the SpecInt performance of the CPUs or a site specific reference machine
if the site is composed of different machines12. This SpecInt value can be used to estimate
the floating point performance since there is a strong correlation between the two in normal
PCs, which is what the LCG-2 is mostly made up of. Once the floating point performance of
the WNs from different sites has been estimated, it could either be used to make the average
floating point performance estimate or it could be used together with other improvements to
create a much more accurate scheduling of jobs. A more accurate scheduling could involve
either knowing the queue lengths in time for the sites, which is not possible with the current
LCG-2, or running shadow jobs on different sites as placeholders, to be replaced by actual
jobs if needed. The placeholder scheme is a way of reserving slots in queues on the Grid. When
a placeholder reaches the front of a queue, an appropriate job could be transferred to it. If
the placeholder’s slot is not needed it could simply die allowing the next job in line to use the
resource. The placeholder scheme would require a way of figuring out that a placeholder has
reached the front of a queue and it would require a way of replacing a placeholder with an
actual job. A drawback to this approach is that while cancelling an unneeded placeholder does
not burden the WN it would still waste resources on the RB and on the CEs. Nevertheless it
offers a much more accurate way of figuring out when to submit jobs to the Grid.
Below is the formula used to decide if a given WorkUnit is to be submitted or not:

2 ·

(

estimated floating point operations for WorkUnit
estimated FLOPS on an average Grid machine

)

≥ deadline − present time.

Since BOINC keeps all of its jobs in one big FIFO queue, the problem of deadline scheduling
could also have been solved by monitoring the job completion rate. The rate could be calcu-

11Each WorkUnit in BOINC already has an estimate of the required floating point operations to complete
it, since this is used when clients connect and ask for say two days of work given their FLOPS performance,
so this is of course the same estimate used by the bridge.

12If the machines are too different the LCG-2 recommends splitting the site into more homogeneous sites.

58

5.3. THE BOINC TO LCG-2 BRIDGE

lated on the server by monitoring the job completion. It could also be calculated by having
each client give an estimate of its expected throughput based on its history and have the
server compile the statistics. The rate could then be used to estimate whether or not a given
QoS-enabled WU would finish in time given its position in the FIFO queue and its deadline.
This way WUs with only a very slight chance of finishing could be submitted to the Grid long
before their deadline ensuring that the QoS is upheld. If the estimate is right, there will be no
waste of Grid resources. However we stick with the simple solution of Kenyon and Cheliotis
though slightly modified.

5.3.5 Queues

Since the BOINC system with the addition of the bridge becomes quite complicated, a de-
scription of the many queues in the system is warranted. Figure 5.2 shows the queues and
their connections with each other and serves as a graphical backup to the following descrip-
tion. Once a WorkUnit is created the results13 are put in the single job queue of the BOINC

BOINC Server

Job queue

workunit

BOINC Client
Project 1

result

result

result

result
.
.
.

Project N

result

result

result

result
.
.
.

...

execution

Job creation

...

CE Batch System

result

result

result

result
.
.
.

.

.

.

BOINC result

other grid job

local batch job

other grid job

execution

WN ...
execution

WN

BOINC Client
Project 1

result

result

result

result
.
.
.

Project N

result

result

result

result
.
.
.

...

execution

Figure 5.2: Job-queues in the extended BOINC system, which now includes the bridge to
LCG-2.

13Redundant computations.

59

5.3. THE BOINC TO LCG-2 BRIDGE

server. During normal operation these results are then picked up by the clients, who pick up
a buffer of jobs during one scheduling session to limit network usage. This means a picked up
result is put in a local queue on the client and awaits execution. Once executed the result is
uploaded and its journey through the queues ended. If the normal operation fails to satisfy
QoS-enabled WUs the bridge kicks in according to the section above. This means a new re-
sult is created and immediately submitted to the Grid. Existing results from the same WU
are still somewhere in the normal BOINC queues, i.e. in the server’s queue or in some local
client(s) queue(s). Since BOINC resources are vast and inexpensive, this scheme maximizes
the chances of the WU finishing in time without any real disadvantages except for stealing
compute power from other QoS-enabled WUs possibly forcing them to be submitted to the
Grid as well. Once submitted to the Grid, the RB of LCG-2 finds a suitable CE for the job
and it is queued on the CE-local batch system. After execution the result is retrieved by the
bridge and the WU is done. The normal results from the WU, if not completed, are still in
the normal BOINC queues and should probably be deleted. However this is not done in the
current implementation. There are quite a few issues with deleting WUs and they are all dealt
with in section 6.5.2.2 concerning the delete tool for the Grid-BOINC bridge. The tool could
actually be used by this bridge to delete the results.
The queue on the BOINC server is FIFO by default but later versions of BOINC supports
prioritizing among WUs14. Each WU is assigned a priority value and the scheduler hands
out the WUs based on this value. We propose setting this value to reflect the ratio between
the estimated number of required floating point operations of the WU and the time until its
deadline when creating a QoS-enabled WU. This value should always be higher than on non
QoS-enabled WorkUnits thereby ensuring that the BOINC system tries to finish the QoS-
enabled WUs before normal WUs. We further propose updating this as the WU gets closer
to the deadline thereby enhancing its chances of finishing in time.
The local queues on the clients are also FIFO, but since the client has a queue for each project
it is attached to, and the user can assign shares to the different projects the FIFO-property
is only assured on a project basis. The batch systems of the CEs have their own queues and
can therefore use whatever scheduling scheme they like, such as Condor’s user-priority based
scheduling from section 2.3.3.

5.3.6 Database Changes

The standard database of the BOINC server does of course not support bridging with the
Grid, so a few modification/additions are needed. The first thing that is needed is a way to
record the QoS agreement for each WorkUnit, in our case a Unix-time indicating when the
result of the WorkUnit is needed. Since the QoS agreement is connected to one and only one
WorkUnit, the most intuitive solution to this need is to add an extra field to the WorkUnit
table. This is the solution chosen and the field has been named ”finish before”.15 A new table
containing workunitids and their corresponding QoSs could also have been used to satisfy the
need, but the former solution is both simpler and better performing, since it doesn’t require
the joining of two tables to find WorkUnits in danger of not honouring their QoS agreement.

14Unfortunately this feature was not available when we implemented the bridge.
15Since not every WorkUnit may require bridge support it is possible to disable this by setting ”finish before”

to zero, which is exactly what happens if no ”finish before” time is specified when a WorkUnit is created. This
also means that users wanting their WorkUnit to be submitted to Grid immediately should set ”finish before”
to at least 1.

60

5.3. THE BOINC TO LCG-2 BRIDGE

The next thing that is needed is a place to record the job-id given by the Grid to submitted
jobs. This id is the only way to identify a job on the Grid and is needed when polling for the
status of a job and when retrieving the result of a job. Since it is very inefficient to poll the
status of a job continuously, a status-time, indicating when next to poll for the status of a
job is almost a necessity. This will be set to an initial estimate and then incremented when
a polled job has not yet finished.16. In theory at least, a job could go into an infinite loop or
something else causing it to never finish or never get detected as finished. In this case, it is
not optimal for the bridge to keep polling for the status of the job. A time-limit is needed on
each job. When the limit is exceeded, the job is considered failed and the database updated to
reflect this. Since a new result will be created for each job submitted to the Grid, the result-id
needs to be connected to a job-id and the job-id needs to be connected to the status-time and
the time limit. These fields could be added to the result table achieving the needed effect.
Since it is very likely that only a few of the results will actually be run on the Grid, it would
be inefficient use of the database and underlying disk-space to add these fields to all results.
For this reason a new table called ”grid job” is created:

jobid resultid workunitid status time report deadline

The observant reader will notice a field called workunitid not mentioned above. This is a
redundant field recording the id of the WorkUnit connected to the job. It is redundant be-
cause the result also records the id of the connected WorkUnit, so the id could be discovered
by joining the result table and the grid job table on the resultid, but for performance reasons
it is included in the grid job table as well. As an example, when a job finishes it needs to be
recorded to both the result table and the WorkUnit table and since the workunitid is already
known, there is no need to do a join on the workunitid between the result table and the
WorkUnit table 17 hereby saving a query every time a job finishes at the expense of a slightly
bigger database.
This concludes the changes to the database.

5.3.7 User Defined Settings

In order for the bridge to submit jobs to the Grid, it needs a few pieces of information from
the administrator. Besides these necessary pieces of information there are a few settings which
can be tuned by the administrator for better performance etc. The bridge needs access to this
information, the usual ways of getting these configuration setting include a configuration file,
environment variables etc. The rest of the server daemons get their configuration settings from
a shared configuration file, it therefore seemed obvious that the bridge should operate in the
same way. This solution means that the administrator only needs to look one place for all his
configuration needs. The downside is of course the size of the single configuration file which
could make it very difficult to cope with. Since the bridge only has 8 configurable settings
and only three of them must be set, we chose to use the existing BOINC configuration file.
The 8 settings are as follows:

• Virtual organization name - Has to be set (Unless ’default’ is valid on the particular

16Callbacks would have been more efficient but also much more complicated for Grid architects to create.
17The two largest tables in the database.

61

5.3. THE BOINC TO LCG-2 BRIDGE

Grid).

• NS (Network Server) server name - Has to be set.

• LB (Logging and Bookkeeping Service) server name - Has to be set.

• NS server port number - Defaults to 7772.

• LB server port number - Defaults to 9000.

• An estimate of the number of floating point operations per second an average Grid
machine can do - Defaults to 100.000.000.18

• The interval in seconds between each execution of the main loop in the bridge19 -
Defaults to 30. Can be used to tweak performance.

• The number of times a failed job is retried by the Grid - Defaults to 2.20

5.3.8 Implementation

The bridge daemon is written in C/C++, with C being the language in which the majority
of it is written as is BOINC. That also explains the rather sad looking class-diagram that is
figure 5.3, but the few classes that do exist deserves to be mentioned. The GRID APP VERSION

and the GRID USER are both container-classes. The former contains information relevant to a
specific version of a registered BOINC application, this information being the version-number,
information about program files and the name of the application. All of this is needed to make
sure that the latest version of the right application and all of its program files are transfered
to the WN, where execution will take place, as well as a correct wrapper script. The role of
the wrapper script will be discussed later in this section.
In BOINC every result is tied to a specific user, a specific host and a specific team, so when
a new result for Grid execution is created, it needs to be tied to a user, a host and a team as
well as every other result. For this reason and to make it easy to see which results are being
executed or were executed on the Grid, a BOINC user, a host and a team to represent the
Grid is being used. This user information is contained GRID USER-class.

18This is a very important number since it controls when the bridge considers a WorkUnit of being in danger
of breaking its QoS agreement.

19In the main loop the bridge checks for finished WorkUnit, submits new jobs etc. When not in the main
loop it sleeps.

20Retrying, is the RB resending a job because of a failure in the Grid system. Not to be confused with
resubmission to the RB, which is not supported by the bridge.

62

5.3. THE BOINC TO LCG-2 BRIDGE

.

.

.

uses

GRID_APP_VERSION
version: int
xml_doc: char []
app_name : char []

lookup(appid);

GRID_USER
hostid: int
userid: int
teamid : int

lookup();

GRID_DB_WORK_ITEM
grid_jobid: char []
report_deadline: int
resultid : int
returned_grid_jobs : int
returned_possibly_finished_jobs : int
status_time : int
xml_doc_in : char []

add_job_to_grid_table(grid_fpops_est);
add_result(grid_user, app_version, time);
delete_files();
get_grid_jobs(limit, grid_fpops_est, time);
get_possibly_finished_jobs(limit);
handle_cleared_status();
parse(row);
parse_grid(row);
set_job_failed(exit_status);
set_job_finished();
set_status_time(new_status_time);

DB_WORK_ITEM

DB_WORK_ITEM();
enumerate(limit);
read_result();
update();

Figure 5.3: The class diagram for the bridge.

The GRID DB WORK ITEM-class takes care of all the database operations needed by the bridge.
The class represents a BOINC job on the Grid meaning it contains both the resultid repre-
senting a normal BOINC job, and the jobid representing a normal Grid job. It contains a
method for getting the WorkUnits from the database that are in danger of not honouring
their QoS agreement and a method for creating new results to be executed on the Grid. It
also contains a method for getting jobs requiring a status check and a method for setting
all the necessary fields indicating a job finish and many more. The GRID DB WORK ITEM-class
inherits from the DB WORK ITEM-class, which is part of the standard BOINC implementation.
The DB WORK ITEM-class inherits from other standard BOINC classes.
To be able to submit jobs, query the status of the jobs and retrieve the output from Grid
resources a proxy-certificate is needed, so naturally the bridge needs this as well. To create
a proxy-certificate for the LCG-2 the user types grid-proxy-init, which asks for the user’s
password before creating the proxy certificate. A proxy certificate is only valid for a certain
period of time set by the user when creating it, thereby limiting security hazards should
it fall into the wrong hands. Automating the creation of proxy certificates or changing the
procedure somehow, could easily open up to large security problems, so no changes to this
procedure have been made. There is however a service called MyProxy, which holds a long-
lived proxy and uses this to issue short-lived proxies or even renew them, if a job runs for

63

5.3. THE BOINC TO LCG-2 BRIDGE

longer than the short-lived proxy’s lifetime. This could be used to issue short-lived proxies for
the BOINC jobs and would only require the administrator to renew the long-lived proxy very
rarely. The downside is of course if someone breaks into the server and steals the long-lived
proxy or tricks the server to issue unlicensed short-lived proxies. For reasons of safety and
simplicity it was chosen not to use the MyProxy server, this means that the administrator of
the BOINC server is required to continuously create a new proxy certificate before the old
one expires, otherwise the bridge fails to interact with the Grid. This setup will most likely
lead to a lot of administrators forgetting to renew the proxy certificate, so a simple solution
is proposed, though not implemented. A small program that monitors the time left before
the proxy certificate expires could be implemented. It should send off a reminder, perhaps an
email to the administrator, when a user-defined minimum amount of time before expiration
is left. This way no new security issues have been introduced, the administrator can choose
how big a risk he wants to take when setting the expiration of the proxy certificate and how
much time in advance he wants to be reminded before expiration.

Files needed for Grid execution.

Execution-sideServer-side

Job-specific files.

Wrapper
script

Input
files

Client
state file

Non job-specific files.

Application
files

Modified
client

Worker Node

Wrapper

Modified
client

App.

Input
files

Client
state file

Figure 5.4: Executing a BOINC job on a Grid WN.

Figure 5.4 illustrates a BOINC job being executed on Grid resources. As mentioned earlier,
a modified client is needed to run the job on the Grid, also needed are: a wrapper script,
the application with all its associated files, the input files specific to this job, and a custom
generated client state file. All of this is transfered to the CE as the input sandbox. The input
sandbox is the set of files that needs to be transfered from the submitting machine, in this case
the BOINC server, to the computing element in order for a job to run. The wrapper script is
first started on the WN, and it takes care of setting execute permissions on files needing this,

64

5.3. THE BOINC TO LCG-2 BRIDGE

setting up the correct client directory structure and executing the modified BOINC client.
When the client runs, it reads the custom generated state-file, from which it learns that it has
all the needed files to run a specific result, so the application is started. Once the application
finishes the modified client exits as well because no more work is available. Finally the wrapper
script cleans up and exits as well, and the result can be downloaded by the bridge daemon.
The heart of the bridge is the main loop, which is run at user defined intervals.21 Every time
round the loop a series of steps is performed by the bridge, these steps are listed below.

• Query the database for possibly finished Grid jobs by selecting jobs with a status time
of less than or equal to the present time.

– Query the Grid for the status of each of these possibly finished jobs.

– Get the output from the finished jobs and update the database for all of the queried
jobs to reflect the finishing of the jobs or to increment the status time of the non-
finished jobs.

• Query the database for WorkUnits about to break their QoS agreement.

– Create a new result destined for Grid execution for each of the found WorkUnits.

– Create all of the needed files to run the job on Grid resources. This includes the
client state file, the wrapper script and a JDL-file describing the job to the resource
broker. The last file is not strictly necessary, the same result could have been
achieved by passing the description directly to the LCG-2 API. By making a file
instead resubmission22 of a failed Grid job is easier.

– Submit the jobs to the Grid via the C++ API.

– As a final step create an entry for each submitted job in the grid job table of the
database so a record of the submissions are kept and the status of the jobs can be
queried during the first step of the main loop.

There are a few problems with stopping the daemon in the middle of a loop, namely database
corruption issues. If it for instance is stopped just before the last step, there is no record of the
submitted job since the database entry to the grid job is never made. This causes the bridge
to loose all track of that job i.e. not querying the status of it. It also causes it to be returned
again, when the bridge queries the database for WorkUnits in danger of not honouring their
QoS agreement. The really bad part comes when the bridge tries to create a new result for
this WorkUnit, causing the database to fail because of clashes with unique fields in the result
table. This is avoided by using a ’replace’ statement instead of an ’insert’ statement, causing
the database to simply overwrite the existing result entry. Since the database no longer fails,
it is just a matter of submitting the job again, which granted is not ideal, but then again not
catastrophic. There are other problems with stopping the bridge in the middle of the loop
though, one of them being stopping it after the output from a job has been retrieved, but
before the database is updated to reflect the finishing of the job. When the bridge is restarted
it queries the Grid again for the status of the particular job and is told that it is ’cleared’,
meaning output has been retrieved and the job is no longer active. During normal operation
of the bridge the status of a job should never be ’cleared’ so clearly it is an odd situation.

21Se section 5.3.7 for more information on user defined settings.
22Resubmission is not supported by current version of the bridge though.

65

5.3. THE BOINC TO LCG-2 BRIDGE

It is of course is relatively easy dealt with by checking whether the output is actually on the
BOINC server, and if so updating the database to reflect the finishing of the job. However
it would be best if the bridge is not stopped at critical places in the loop, therefore signal
handlers have been installed to catch certain signals and defer stopping the bridge to a safe
spot. This is not bulletproof though as some signals cannot be caught, causing the bridge to
quit immediately, however it should be robust enough to handle this.
If a canonical result is found from normal clients while the same WorkUnit is being processed
on the Grid the result from the Grid is simply thrown away when the job finishes.

5.3.9 Testing

By the time we were ready to test the bridge, the LHC@home project was unfortunately
no longer running. We therefore only had rather limited resources available for testing the
bridge. Nevertheless we managed to stage a small test involving a single BOINC client and
the test project mentioned in section 3.5.1. We submitted 30 WUs with a deadline of 2 days
and we demanded 2 matching results for a quorum to be found. We left the default setting of
generating 5 initial results untouched. Each job takes about 40 minutes to run on the client
and is run at least twice, sometimes more because of the disconnected operation of BOINC
clients. This leaves the single BOINC client just short of finishing the 30 WUs within 2 days.

0

50000

100000

150000

200000

0 5 10 15 20 25 30

ti
m

e
in

se
co

n
d
s

WU

jobs submitted to Grid Deadline
Grid
PRC

Figure 5.5: A small test of the BOINC-Grid bridge.

Figure 5.5 shows the finishing times of the jobs, whether they were submitted to Grid and
their deadline. Rather embarrassingly the five WUs submitted to Grid did not make the
deadline. Even though the five Grid jobs did not make the deadline, they did finish before the
single BOINC client could finish either of them. The explanation as to why the jobs did not
finish in time is quite embarrassing. If figure 5.5 is studied closer one discovers that the jobs
were submitted to Grid after the deadline had passed. This is because the proxy certificate
had expired causing the bridge to fail in submitting the jobs. The mistake was discovered two
hours after the bridge first tried to submit the jobs. If the two hours are deducted from the five

66

5.3. THE BOINC TO LCG-2 BRIDGE

WUs they would not only have been submitted before the deadline, but also quite possibly
made the deadline23. As stated in section 5.3.8 a small program to monitor the expiration of
the proxy certificate would probably be a good idea. ;-)
Although this test was successful except for the proxy certificate glitch other tests might fail
since the bridge unfortunately only operates under the best effort scheme. A full scale test on
a project like LHC@home would have been beneficial.

5.3.10 Security

The security from the point of view of the BOINC platform is unchanged if not improved,
since some of its jobs are now running on trusted resources. Because of the bridging with
the Grid, the BOINC platform is no longer the only system to consider when evaluating the
security. Since the server complex now holds a (hopefully) valid proxy certificate for Grid
resources, there is a chance of this falling into the hands of an intruder resulting in possibly
malicious use of Grid resources. Extra care must therefore be taken to try and avoid break-ins
to the server complex, although this already is a high priority to protect the many regular
BOINC users. Even if the proxy certificate is kept safe, in for instance the MyProxy server,
intruders could still misuse Grid resources. This is because while the long-lived proxy is safe,
short-lived proxies still get issued by the MyProxy server and these proxies could be used to
run malicious code by a possible intruder.
Then there is the fact that the BOINC server automatically submits jobs to the Grid, which
also opens for security issues. It means that anyone with permission to submit jobs to the
BOINC server automatically get permission to submit jobs to the Grid whether they have
certificates for the Grid or not. This problem could be fixed by having everyone wanting to
use the bridge for deadline assistance submit a proxy certificate of their own to be used to
submit their jobs to the Grid. This however means that the BOINC server now has to manage
many proxy certificates, and opens up for even bigger security issues. A partial fix to this
problem could be to submit links to MyProxy servers instead of the actual proxy certificates,
but these MyProxy servers can still be misused as described above. Besides this, the BOINC
server has no way of telling who submitted a job, so information about the proxy certificates
has to follow each WU.
So basically keep an even tighter security on the server complex when bridging with the Grid.

5.3.11 Limitations and Improvements

There are quite a few things that would improve the bridge in one way or another, but did not
make it into the current implementation. These things, together with some other limitations
in our approach, are the subject of this section.
It would probably be an improvement to change the scheduler of the BOINC server so that it
does not send out results from WorkUnits already submitted to the Grid, since it would seem
some what of a waste, since the WorkUnit is already being executed on a trusted resource.
On the other hand, since it is being executed on the Grid, it is presumably pressed for time,
running it on more computers should increase the chances of it finishing in time24 and public
resources are considered vast and inexpensive. We however still feel it would be a waste and
that the public resources could be put to better use by running other WorkUnits.

23unless the queue length changed dramatically within those two hours
24Albeit only by a little since the turnaround time on BOINC clients is quite big.

67

5.4. POSSIBLE BENEFITS FOR BOINC AND LCG-2 FROM THE BRIDGE

The current implementation does not record the CPU time used by jobs on the Grid. Im-
proving this by recording certain metrics, CPU time among others, on the WN, would make
it very easy to implement payment for used Grid resources.
One major limitation is the size of the input sandbox on the LCG-2. This limit is set in the
configuration of the resource brokers of the LCG-2, therefore out of reach for many BOINC
server administrators and if the limit is hit, the jobs fail to be submitted. The effect of this
limit is that all the files needed to run the BOINC job, i.e. the modified client, the application
files, the input files, the client state file and the wrapper script must fit within the limit. To
remedy this major limitation, static files should be stored on the Grid itself in particular the
modified client and the application files, which are also usually the largest components of the
BOINC job. Storing static files on the Grid has not been implemented in the current version
of the bridge, so in order to make it a little less painful to live with, the modified client is
stored in a zipped format on the BOINC server and unzipped once transfered to the CE. It
is also recommended to zip the application files and the input files as well, however it is the
responsibility of the application developer to ensure the unzipping of the files.25

When the bridge interacts with the Grid i.e. submitting a job, querying the status of a job or
getting the output of a job, it is on a single job basis. The problem with this is the overhead
of connecting to the Grid for each job, for instance when querying the status of 20 jobs a
connection to the Logging and Bookkeeping service is made for the first job and when the
answer comes back, a connection for the second job is made and so on. A performance im-
provement would be to do these interactions with the Grid in bulk, for instance querying the
LB service for the status of the 20 jobs with a single connection. Fortunately the C++ API
for the LCG-2 offers job submission, status querying and output retrieval methods that work
on groups of jobs, so there should be no problem in implementing this improvement.
Another limitation is that we only allow WUs which have an associated application that sup-
ports Linux to run on the Grid. This is because none of the machines on LCG-2 are running
Windows. It would therefore make no sense to run an application built for Windows on the
Grid, as it would immediately fail. One way around this limitation is to use Wine, a windows
emulator on Linux, to run the application. It is available on some LCG-2 nodes and the Win-
dows version of the BOINC client is known to function under Wine. It is though not certain
that every application made for BOINC and Windows will run without problems.

5.4 Possible Benefits For BOINC And LCG-2 From the Bridge

Being able to run regular BOINC WUs on LCG-2 resources could possibly make some jobs
suited for BOINC, which were not suited previously. For example jobs which do not have a
strict deadline, but where the result is wanted sooner than say 2 weeks. Being able to support
such jobs makes the BOINC system more usable. The bridge could also help with the problem
of some WUs finishing very slowly on normal BOINC clients. The problem was experienced on
LHC@home and is described in section 3.6.3. Getting rid of the dreaded tail would definitely
be of value to the physicists using SixTrack on BOINC.
Having the bridge could also benefit BOINC by making the applications more versatile. Now
BOINC applications do not have to be run under the BOINC client but can be run on LCG-2.
If for some reason a user wanted to run a BOINC application on LCG-2 he would not have to

25Even if a BOINC application is never intended to run on the Grid it is still recommended to zip the
application and the input files, since many users treasure their Internet bandwidth.

68

5.5. FEATURES MISSING IN LCG-2

remove the BOINC calls from the application or recompile it with standalone mode26, learn
how to use LCG-2 and create a job description for LCG-2, but instead just create a normal
BOINC WU with a very optimistic deadline.
In an indirect way the ability of BOINC to use Grid resources could actually reduce the load
on the Grid resources. It sounds contradictory, but a more reliable BOINC system is now able
to handle jobs that would otherwise have gone to the Grid. A portion of these jobs end up on
the Grid anyway, but some would now be handled by BOINC clients. Thus reducing the load
on LCG-2. However the price of using the bridge still has to be paid, i.e applications have to
be ported to BOINC and a slower turnaround time has to be expected.
If we take the bridge from LCG-2 to BOINC, introduced in the next chapter, into consideration
the bridge from BOINC to LCG-2 could further benefit LCG-2 by improving the usefulness of
the LCG-2 to BOINC bridge. With no bridge from BOINC to LCG-2 the other bridge would
probably only be used for low priority jobs with no deadline at all. However with the BOINC
to LCG-2 bridge the other bridge can safely27 be used, since if the BOINC clients are not fast
enough, the job will just go back to LCG-2. These two bridges working together could thereby
reduce the load on LCG-2 further, however the fact that Grid resources are trusted and public
resources are not, should not be forgotten. This fact makes the cooperation between the two
bridges a bit more complicated, but if a Grid user wants to trust public resources and has a
bit of extra patience running jobs via the LCG-2 to BOINC bridge makes more sense because
of the BOINC to LCG-2 bridge.

5.5 Features Missing In LCG-2

The LCG-2, although a nice platform, is not perfect in respect to bridging with a PRC plat-
form. Features that would improve on this are discussed in this section.
The most important shortcoming is the lack of QoS from LCG-2. A minimum QoS or a
reservable QoS from the LCG-2 would have made it possible to supply a QoS from the com-
bined resources of BOINC and LCG-2 as described in section 5.1. The limit on the size of
the input sandbox limits the jobs that can be run without storing files on the Grid. It would
be beneficial to the bridge to have this limit removed since this would allow the non-static
files such as the WU input files to be unlimited in size. An unlimited input sandbox size does
not make it less of a good idea to store static files on the Grid as proposed in section 5.3.11
since this reduces the size of a job, thereby reducing network transfers and speeding up job
execution. It only makes it easier to submit WUs of any size, since this would otherwise need
to be taken care of by storing the non-static files on the Grid. An unlimited input sandbox
would on the other hand not be beneficial to LCG-2 since it could increase the demands on
the system. The problem could possibly be solved by using quotas instead of a static limit
for all jobs. This would allow jobs with a large input sandbox to run if the given user’s quota
allows for it. It would also avoid increasing the average demand on LCG-2 since in order for
the quota to allow the running of jobs with a large input sandbox, either small input jobs or
no jobs at all would have to be run in a given period.
To improve the efficiency of the bridge callbacks regarding the job status would have been
beneficial. Polling introduces an unnecessary overhead since a lot of times there is no sta-

26Which mentioned previously is no longer needed with BOINC anyway.
27Not safely as in the public resources can be trusted but safely as in getting the jobs back within a reasonable

amount of time.

69

5.6. SUMMARY

tus change between polls. Being able to for instance register a program to be called when
a job changes status, could remove the overhead. The program would get the job id along
with the status as input parameters and then on the basis of this information, decide what
to do next. This could for instance be to retrieve the output and update the BOINC database.

5.6 Summary

In this chapter we showed how Kenyon and Cheliotis proposed to turn public resources into a
resource able to deliver a certain measure of quality of service using a small set of dedicated
resources. We then showed how this design can be modified to supply a measure of reliability
using a Grid as the dedicated resource. This method can reduce the overall cost of such an
extended PRC system, because we only have to pay for the reliable resources when we actually
need them. On the other hand the method is less reliable, because Grids in practice are less
reliable than dedicated resources. We implemented the method by creating a bridge from
BOINC to LCG-2. This bridge allows BOINC WUs to be submitted to LCG-2. It also keeps
track of WUs with deadlines and decides if and when they should be submitted to LCG-2.
Unfortunately the LCG-2 does not supply a QoS, so instead of being able to guarantee a
certain QoS, the system still relies on best effort. However, initial tests shows that relying on
the combined BOINC and Grid resources provides better reliability. The new system allows
job submitters to specify a deadline on jobs which the system will try and uphold, while
attempting to use as many public resources as possible. Finally we described limitations of
the bridge and suggested possible improvements.

70

Chapter 6

The GRID-BOINC Bridge.

In this chapter we describe the difficulties in creating a bridge that allows a Grid job to be
run on a PRC platform. We then describe the security issues one encounters in doing so.
At last we turn our discussion to the specifics of a Grid-BOINC bridge, and describe the
modifications we have made to BOINC to make it better suited to run Grid jobs.

6.1 Grid Jobs on a PRC System

Finding a defining characteristic that is common for all Grid jobs is very difficult. This is a
result of the nature of the Grid. The idea is that the Grid should be a ubiquitous computing
resource able to satisfy any computing need that users may have. This utopian ideal is of course
not implemented by any of the Grids that are being developed today. A general characteristic
of the Grids today, is that they run some form of Unix, most of them Linux. All this means
that Grid jobs are very general, whereas the type of jobs that can be run under the different
PRC platforms are more limited. How limited of course differs from one PRC platform to
another. On one end of the spectrum we have a PRC platform like Condor which allows
any job to run as long as it is compiled for the platform of the client. Condor is though so
lacking in features and security that it is arguably not usable for truly public PRC projects.
On the other end of the spectrum we have PRC platforms like Frontier that require that the
programs you want to run must be written in Java, on the other hand this probably means
that Frontier should be easy to port to any platform that supports Java, but we cannot be
sure because Parabon has not divulged very much information on Frontier.

6.2 Security

As we have seen in the Grid and PRC chapters the way these systems handle security is very
different. The Grid’s security model is based on complete trust, at least in its ideal form1. Just
like you would not expect that it makes a difference for your toaster whether your electricity
is produced in a nuclear power plant in France or a windmill in Denmark, you would not
expect the output of your program to be different depending on where it was executed on
the Grid. This is diametrically opposite to how security works on a PRC platform. The end
execution machines cannot be trusted on a PRC platform, whether because of hardware errors

1As a computational metaphor for the electricity grid

71

6.2. SECURITY

or because of malignant tampering by users is not important. The important issue is that a
person submitting a job to the Grid would expect that the result, being executed on the Grid,
can be trusted. The bridge, to conform to Grid semantics, would therefore have to have a
way of turning the untrusted PRC machines into trusted resources. Luckily many of the PRC
platforms (see chapter 2) have this feature built in. Once Grids allow or require payments, it
would also make sense to allow distinction between resources. So a user could decide to use a
less secure, but also less expensive PRC resource.
There is though one type of security a PRC platform can never supply. You can never trust
your code to stay secret. Some PRC platforms, like Parabon, see 2.4.1, tries to solve this
problem by encrypting data and obfuscating the code, but it would have to be decrypted when
it is run. A determined hacker would therefore be able to gain access to the source and input
data in RAM if nowhere else. There is, at present, no way around this limitation and a Grid to
PRC bridge cannot be used for applications that need to stay secret. A group of hardware and
software manufacturers have created a workgroup called The Trusted Computing Group. One
of their aims is to solve the problem outlined above, see [36] and [37] for more information.
Most PRC platforms provide mechanisms to insure that a result can be trusted as being
correct2. We believe that using these mechanisms, for example BOINC’s multiple execution
strategy, will allow you to have the same amount of trust in the result found by a PRC
platform and the one returned by the Grid. An interesting area for further research, would
be to study this in more detail, for example by running a program, where the outputs are
known in advance, both on the Grid and on the different PRC platforms and compare the
error rates.
If the Grid to PRC bridge is to be a success, the public donating their computer power has to
trust the Grid. If people are to donate their compute power, they have to trust that what they
are running will not harm their computer. Some PRC platforms use sandboxing to supply
this security whereas others, like BOINC, have no such security at all and the users have to
trust the application completely. Another problem is trusting the validity of what the user
is donating his compute power for. Often users give their compute power away, because they
are interested in the subject and expect the results of the research to benefit everyone. A
company might use this bridge to do research on chemical weapons and if the users found out
they would probably not donate their machine. It can be very hard to prove that only ”good”
research is using the bridge, if any entity is allowed to execute code through the bridge. One
way to solve these two trust issues, would be to extend the Grid authentication mechanism
to the PRC client. Each user could then decide for himself which certificates to trust and
through those only execute code from entities he trusts. This is not a very feasible solution
for our bridge. It would increase the needed bandwidth and it would require the clients to
handle the granting and revocation of rights on their machine. We fear that this would be
more complicated than what the average user is able to handle, and that it is also much more
time consuming for the users than they are willing to bear. Another solution is therefore to
let the bridge act as a proxy trust server. This means that all the PRC system’s clients would
implicitly trust whomever the bridge trusts. This off course means that whomever is running
the bridge has to be very careful when deciding which Grid users to trust with access to the
bridge.

2Correct meaning that the result is the same as if run on a trusted machine, not that the program actually
does what you expect it to.

72

6.3. THE IDEAL BRIDGE

6.3 The Ideal Bridge

An ideal bridge should be completely indiscernible to the user. It would automatically be
a resource candidate if it was suited to run a specific job. The idea of an ideal bridge will
probably not be possible to implement. Practically all of the PRC platforms require specific
information on a job, that the job has been compiled specifically for this PRC platform or
that the job conforms to some standard. This means that the user has to be aware of the
bridge to conform to whatever demands the specific PRC platform has to a job.
Since the ideal bridge is not possible, we have to decide what constitutes a bridge from Grid
to a PRC system. We will use the following definition:
A bridge must be able to run jobs submitted through the Grid interface on the PRC system
and it has to be more general than just a new submission system through Grid. This definition
means that while it might be necessary to specify more metadata about the job, the application
should not be recompiled to fit the PRC system. If it was recompiled it might no longer be
runnable on the Grid and therefore the Grid would simply become a new submission system
for the PRC system. We will use this definition to discuss a design for the bridge.

6.4 A BOINC bridge

Here we will discuss the issues specific to creating a bridge from the LCG-2 Grid to BOINC.

6.4.1 Running Generic Jobs on BOINC

The jobs that run under BOINC and under Grid are very different. A Grid job can be any
binary compatible executable, whereas a BOINC job has to be compiled with the BOINC
API, so the application can tell the core client when it has started, get the translated name
of the files it needs and so on. This means that we could require that all Grid jobs that try
to run using the GRID-BOINC bridge should conform to the BOINC standards.
Another possibility is to create a wrapper program that takes care of communicating with
the core client and translating the files before running the program. It would also have to
handle the different suspend and kill signals that the core client generates. The problem with
this approach is that only the job itself is capable of supplying the correct information to the
core client. An application run under a BOINC client is encouraged every once in a while
to tell the client how many percent of the current job is done. This is then displayed to the
user. A universal wrapper program will have no way of calculating this percentage correctly.
When we started this project BOINC was in no way suited for these kind of jobs. But because
ClimatePrediction.net(CP.net) needed something like a wrapper, the newer version of BOINC
has incorporated many features that will allow such a wrapper program to function. It will
still lack some of the features such as the percentage display discussed above. The reason the
CP.net wrapper works correctly, is because it knows how the different programs that runs
under it work. Their wrapper can extract the needed information from the output/checkpoint
files written. This is not possible for a general wrapper though.
Another important aspect of keeping your users happy is a nice screensaver. Most of the
programs that run on the Grid do not display any graphics. It would not make sense when
the program is very likely being executed on a machine that is not able display it. BOINC
also supports that the graphics can be a completely separate program. This feature was
implemented on the behalf of CP.net, a climate modelling project also using BOINC. The

73

6.4. A BOINC BRIDGE

bridge could therefore supply a standard graphics binary that would run if the Grid program
did not supply graphics. It is not even necessary for the bridge to supply such a graphics
program, because the BOINC client has a built-in screensaver that is run if the application
does not supply graphics. We will therefore not design such a graphics program for the bridge.
But because the users seem to put such a great weight on a nice screensaver, we will suggest
that it is done by anyone who wants to deploy the bridge.

6.4.2 Security

From section 2.2.2 we know that the security in BOINC is based on trusting that the project
only gives safe jobs to the client. There are two ways to deal with this as we saw in section 6.2.
Using the first way, we could add a list of trusted certificates to the preferences (see section
2.2.1) a user sets. Thus the user could allow only executables from VOs he trusts to be run.
As we stated before, we believe that this method will be too unpopular with some users and
too difficult to administrate for other users. We will therefore use the second method, which
is simply to resign a job with our own key when we receive a job from an entity we trust. This
requires that the private key is present on the BOINC server, which is of course a security
risk.
Another problem with BOINC’s security measures is the limits on computations. These mea-
sures are in place more to protect from bugs and mistakes than from actual conscious attempts
of cracking. When a job is sent to a client, it has to specify a maximum number of floating
point operations it is going to perform, as well as how much disk space the output is going
to take up. The BOINC client will then from the number of operations, with the help of a
benchmark, estimate a time limit for the job. If this time limit is reached, the job is killed
and fails. The same applies for the disk space; A user can specify that he only wants to let
BOINC use a 100 MB and if this limit is reached the job is killed. The BOINC scheduler
will only send a job to a client if the job says it needs less space than what is available on
the client. These numbers are not easy to estimate for the bridge. It could simply use the
largest possible value for the time limit, thus insuring that the job will not be killed, but also
removing all the protection from run away processes and infinite loops that this feature was
meant to give. This method would also present a problem if the BOINC-Grid bridge from
chapter 5 is in use. That bridge would have a hard time doing deadline scheduling when the
estimate for the runtime of the job is far from the real value.
The disk limit is a much harder problem, if we simply maximize the disk usage estimate to
make sure that a job is allowed to finish, it will probably not be distributed to any client
because their maximum disk usage limit is much smaller. We could also set the estimate to
the preferences standard disk usage limit, since the average user will probably not change
this setting. This then gives us the problem that jobs, which have output files larger than
this standard, will fail because they reach the limit. The only reasonable way to handle this
problem is to require that jobs run through the bridge, have to specify disk usage in the job
description. This, however, is a departure from our design philosophy, that the user should
not need to know anything, specific to BOINC, to use the bridge. It will demand that the
submitter estimates how much disk space each of his jobs are going to use, which is not
normally done at LCG-2. Validation is also an obstacle for such a bridge. We need to use
BOINC’s multiple execution strategy to supply confidence in the correctness of the result. To
compare the results we need a job specific validator, but this is of course not supplied by a
Grid job. We propose that a bridge could use the validator, we used at first in the LHC@home

74

6.5. THE PROTOTYPE

project. It insures that the results are identical. This would probably discard a lot of results
that would have been good enough, but the validator has no way of knowing that.

6.5 The Prototype

We had not planned to implement a GRID-BOINC bridge, only study the possibility of such
a bridge. Through our difficulties with implementing the LHC@home project, specifically
the discrepancies between the documentation and the actual software, we became convinced
that we had to try to write some software for the bridge to get an actual idea of the issues
involved. We have not made a full implementation of the bridge. But we will describe some
of the specific challenges in such an implementation.

6.5.1 Architecture of a Grid-BOINC Bridge

In chapter 4 we saw how the LCG-2 was built out of many different elements. We saw that the
GRAM protocol is used to submit jobs to the local job queue of a CE and cancel them. The
system behind this machine can be many different types. In LCG-2 some sites run clusters
with the LSF clustering software, and others run with the public domain PBS systems. There
is even a backend for the cycle-scavenging Condor system that we described in section 2.3.
For the Grid to work many different batch systems and other backend architectures would
have to be supported or it should at least be relatively easy to add support for an unknown
architecture. It would be difficult to get new organizations to join a Grid if they had to change
their entire computing infrastructure to one supported by the Grid. The GRAM protocol
therefore consists of a generic part that communicates with the Grid and a JobManager
interface that has to be implemented specifically for the backend architecture. Many of the
most common architectures already have implementations of this API. We will describe the
API in the next section(6.5.2). Based on this our approach for adding the BOINC server as
a Grid resource, would therefore be to make a new JobManager that supports BOINC as the
backend system. Once this new JobManager was installed on the BOINC server, we would
only need to publish the presence of the BOINC server to the Information System to have a
functioning Grid to BOINC bridge.

6.5.2 The GRAM Job Manager API

LCG-2 uses the GRAM Job Manager from the Globus toolkit to handle job submissions.
This job manager supports many different backend systems through its scheduler interface, de-
scribed in [24]. We have to write a new Perl class that implements the Globus::GRAM::JobManager
interface. Specifically we have to inherit the JobManager and implement at least the following
functions:

• submit(): A function that takes a Globus::GRAM::JobDescription and queues the job
described therein on the backend system.

• poll(): This function should return the status of the job in the JobDescription.

• cancel(): Removes a job from the queue or stops it if it has begun execution.

There are many more functions that can be tailored specifically to the backend, but these
are the bare necessities to make a working job manager. In the first case we already have a

75

6.5. THE PROTOTYPE

library on the BOINC servers that contain a program, namely create work, that will submit
a job to the BOINC servers. However more work is needed to decide on the options to this
program and moving files to the BOINC server, this will be covered in section 6.5.3 below.
The two last ones would have been fairly straightforward if BOINC had any notion of polling
or canceling jobs. Unfortunately that is not the case. Because we believe these functions
would be interesting in other contexts than just a Grid to BOINC bridge, we have decided to
separate these functions from the bridge and make them standalone tools. They are described
in the next subsections.

6.5.2.1 The Poll Tool

This tool queries the BOINC server and deducts the state of a WorkUnit and then returns
the corresponding GRAM::jobstate value. There is unfortunately not a one-to-one correspon-
dence between the states in the GRAM protocol and the states of a BOINC WorkUnit. The
GRAM states were based on the fact that a job would run on a reliable cluster where it is
easy to figure out the state of a job. In the BOINC system we do not know when or if a
job will actually be returned. Furthermore there is no documentation of what the different
GRAM::jobstate values denote, except what their names imply. We have therefore defined
the meaning of the different values in a BOINC context here:

GRAM::jobstate BOINC state

DONE the WorkUnit has been assimilated and a canonical result found
FAILED the WorkUnit has failed in some way. The WU’s error mask is not

null.
UNSUBMITTED there are no results3 associated with the WU

ACTIVE the WU’s results have state IN PROGRESS, they have been dis-
patched to clients

PENDING results present, none have state IN PROGRESS, the results are queued
for dispatch

The tool takes the name of the WU as input and then decides which state the WU is in
by querying the BOINC database. It looks in the standard BOINC project configuration file
to figure out the database settings. The poll tool has been implemented and tested. An inter-
nal test was used, WUs were artificially created to belong in one of the states above and the
poll could correctly recognize each state as well as fail gracefully if the WU was not found. It
is now a part of the standard BOINC server distribution.

6.5.2.2 The Delete Tool

One of the prerequisites for creating a new GRAM JobManager implementation is that it
is possible to delete a job. This feature is not included in BOINC. We have therefore had
to write our own utility program that allows you to cancel a WU on the BOINC server.
This has shown itself to be really useful for the LHC@home project where the physicists will
launch a study and then suddenly discover that their input parameters were wrong. Using
the standard BOINC implementation, they would have to ask the server administrators to
manually remove the WU and results from the database. This process can now be automated.
The delete utility is complicated because of the distributed nature of the WU. The state of a
WU can be divided into 4 distinct cases.

76

6.5. THE PROTOTYPE

In the simplest case, the WU has not been sent to any BOINC clients. In this case, we can
simply delete the WU and its related results from the BOINC database and delete the WU
input files from the download directory.
In the second case, results have been dispatched to clients, but no results have come back.
The problem is that when we have dispatched results to clients, there is no way to contact
clients from the server. We will therefore have to wait until the clients contact the server to
upload the results. One way to solve the problem is simply to delete the WU and results
from the database. The client will then get an error message when trying to upload results
and everything is fine. This works fine if all the clients are located in-house, but presents a
big problem in public projects like LHC@home, because users will not understand why this
happened.
It can also happen that some clients have returned results, but not enough good results have
been returned to grant a quorum. In this case, as the one above, we have outstanding results
and we use the same approach as above to solve this problem.
Common for both of the cases above is the question of credits. Do we grant credits? We have
no way of verifying the results as we do not have a quorum. Now an honest client has spent
time on calculating the WU even if we do discard them, which speaks in favour of granting
credits. The reason not to give credit is to avoid cheating. Once the WorkUnit has been
deleted there is no way to validate incoming results. We have chosen the second approach.
The final case is when all results have been returned and the WU validated. This case is also
simple, set the WU to have been cancelled, but let the clients keep the credit.
The delete tool has also been implemented, it takes the name of a WU as input. The WU’s
error mask is set to the symbolic value JOB CANCELLED and all unsent results for this
WorkUnit are flagged as not needed. Results that have been allocated to a client are left
to finish normally. This tool has to be used with care, because it has write access to the
database. It is very important that this tool is only runnable by trusted server administrators.
The delete tool is executable by the BOINC administrator and can delete any WorkUnit. It
is only runnable by users outside the BOINC servers through the JobManager from section
6.5.2. The JobManager makes sure that the user’s certificate is matched to the job. It is
therefore not possible for a user to delete another user’s jobs.

6.5.3 Job Submission

Submitting a job is the most difficult of the three operations needed for the GRAM job sub-
mission and it will highlight one of the shortcomings of the BOINC system. We believe that
a BOINC bridge should allow for two ways to run a job. If the application is a standard Grid
application, the bridge should be able to run the application through a wrapper program. It
is then the responsibility of the wrapper to do all the calls to the BOINC client. It should also
be possible to run an application that has been specifically compiled for BOINC. A program
that is compiled with the BOINC API will discover at run time whether a core client is avail-
able, if not it will then run as an ordinary standalone program.4 Such a program would then
just as easily run on a Grid machine, but allow for more user friendliness than the wrapper
approach when running under BOINC. This approach is therefore not just a new submission
system for BOINC.
The problem with the second approach is that BOINC treats applications and data very

4This is only true for the newest versions of BOINC.

77

6.6. FUTURE AREAS OF INTEREST

differently. The BOINC system is designed to run one or a few applications per project. The
idea is that the applications are downloaded to all BOINC clients and the WorkUnits are
then run by the appropriate application. A physicist at CERN would need a very different
approach, because every analysis with for example the ATLAS software5 is a new executable.
The physicist fills in a kind of schema and then compiles the ATLAS software to get an ex-
ecutable that will do the needed analysis. Because a WorkUnit is not bound to a version of
an application, it will always choose to run the newest version. We therefore have to create a
new application in the BOINC framework for each Grid job. This can be done by appending
some unique character sequence to the name of the executable and making a database table
that relates the new name with the Grid job. Then the renamed executable is registered as
a BOINC application and the data is added as a WorkUnit for this application. This is nec-
essary because two different applications might have the same name. This will put a load on
the server because it is now storing all the applications run through the bridge, even though
they will only be used once. The BOINC server should be modified so that once all the WUs
belonging to a Grid application have finished, the application is deleted to save space. It
should also be possible to specify that a certain application will be used by many jobs, and
therefore should be kept on the BOINC server. A job submission should therefore contain a
flag that tells whether or not the job wants to use an application kept on the server. If the
flag is not present, the job will be treated as a standard job.
The wrapper approach does not have this problem because all incoming applications to the
GRID-BOINC bridge will be treated as input data to the wrapper. Another interesting fea-
ture with this approach, is that with an appropriate wrapper it would allow us to run the
applications in a sandboxed environment.
A submission system should transfer the needed data and applications to the BOINC server
complex. It is not good enough to leave them where they are, because the BOINC clients will
have to fetch the data and they will not have access to machines internally on the Grid. The
submission system should do the necessary file translations, create a script for the wrapper if
necessary, add the application to the database if needed and add the WorkUnit afterwards.
The two latter functions are already available on the BOINC server.
A Grid-BOINC bridge implementation should at least support our wrapper approach or a
similar method that is able to run jobs not compiled for BOINC. We also recommend that
the bridge allows jobs specifically compiled with BOINC to run without the wrapper, so the
job can fully utilize the BOINC framework.

6.6 Future Areas of Interest

As we have seen above, the public nature and the structure of BOINC puts limitations on
the usefulness of the GRID-BOINC bridge. The pull model of resource allocation in BOINC
is though very interesting because it diverges strongly from the push model that is otherwise
used by all the other back-end systems running under GRAM. It would be very interesting to
further study the possibility of directly integrating the pull model into the Grid infrastructure.
Instead of a Grid user directly asking each resource, if it can accommodate his request, he
could put it in a global job queue and the clusters could then take the jobs out of this queue.
We touched briefly upon sandboxing in section 6.5.3. This is another interesting subject of
future development. At the moment the security of a client machine is completely based upon

5ATLAS is the main simulation software for the largest experiment at CERN, also called ATLAS.

78

6.7. RELATED WORK

the user trusting the project he has signed on to. If anybody can run any application through
the GRID-BOINC bridge, this trust is being misused. One remedy is to make sure that any
program from the bridge is run in a sandboxed environment. This could be done through the
wrapper or changing the BOINC client itself to always run applications sandboxed.

6.7 Related Work

A group at the University at Maryland is developing the Lattice project, see [33], that aims
to create a unified Grid architecture which includes both push and pull models for job dis-
tribution as well as the BOINC platform as a computational resource. They have a general
submission system that will choose a suitable resource either the Grid, batch clusters or
BOINC for a given job. Since their ”bridge” does not allow general programs to run on
BOINC, but only predetermined set of applications, their approach does not meet our crite-
ria for a Grid-BOINC bridge, see section 6.3. However, they have worked on running general
programs under BOINC without recompiling it with the BOINC API. Their method consists
of intercepting system calls and then passing the execution to their own functions where the
required BOINC functionality is done. One example could be the way BOINC handles files:
Each file is given a unique physical filename and the program has to use a BOINC function
to get this filename from the logical filename present in the program. The way the Lattice
project handles this is by installing a shared library that will intercept all fopen calls. They
then do the needed BOINC calls before running the real fopen call. How they do this is
described in [34]. This method would work as a wrapper as well as sandboxing, because the
functions called could be checked for permissions by the wrapper. Unfortunately they have
not been able to make it work for a general binary yet.

An interesting new project starting at the Danish Grid Center aims to port coLinux[35]
to BOINC. CoLinux has implemented the Linux kernel as a Windows driver. Because drivers
can run in kernel mode, or Ring 0 in x86 terminology, coLinux allows a full Linux distribution
to run on a Windows machine achieving almost the full performance potential.
If this project succeeds it would, coupled with our prototype work on modifying the BOINC
servers to use the GRAM protocol, allow a real Grid-BOINC bridge. First of all no modifica-
tion to the binaries would be necessary because coLinux would handle all the BOINC calls.
Furthermore many of the security issues would be solved because the applications would now
be effectively sandboxed inside coLinux. Even better the Grid Linux applications would now
be able to utilize the much more numerous Windows machines as computational resources.

6.8 Summary

A bridge between PRC and Grid Computing is an interesting concept, it would increase the
computing power of a Grid such as LCG-2 markedly. For a comparison LCG-2 consists of
approximately 10,000 CPUs, whereas LHC@home could deliver the equivalent of 360 dedi-
cated CPUs and it was only so small because our server capacity had limited the amount of
users to 6000. We believe that it is possible to extend the size of the user base to at least the
500,000 users that SETI@home has. We therefore believe that it is possible to increase the
effective computational power of a Grid, such as LCG-2, markedly by utilizing a bridge to a

79

6.8. SUMMARY

PRC project. Unfortunately, we do not believe that it will be a good idea to use BOINC for
creating such a bridge. As the preceding chapter has shown, it would be very time consuming
to create a bridge without modifying BOINC in such a way that it becomes so general that
its advantages over other PRC platforms are removed or specializing the Grid submission
procedure for the bridge in such a way that you might as well submit directly to the BOINC
server complex. We believe that it would probably be better and easier to turn Condor into
a real PRC platform instead of creating a bridge to BOINC. Using coLinux together with
BOINC also seems like a very promising line of enquiry, but since this project is only in the
planning stage it is too early to tell whether it will be successful.

80

Chapter 7

Conclusion

In this thesis we set out to create a PRC project as the basis for creating a system that could
supply a better quality of service than ordinary PRC systems. We envisioned that this could
be done by mixing PRC and Grid resources.
We created a popular PRC project at CERN, which provided a considerable computational
resource. During the two months the project ran, 61.6 years of effective CPU-time was donated
by the public. This CPU-time was used to run a large amount of studies with the SixTrack
application to ensure beam stability for the LHC. As the backbone of this project, we used
the newly developed BOINC platform for public computing. We also made improvements to
the BOINC system such as a FORTRAN API which is now a standard part of BOINC.
After gathering experience with the BOINC system, we went on to extend it in an effort to
supply QoS from public resources. To supply QoS from public resources, our scheme requires
a way to reserve a certain level of QoS from Grid resources. The Grid available to us, the
LCG-2, does not offer such a level of QoS, in fact it does not support QoS at all. So by
combining BOINC and LCG-2 we were not able to supply QoS from the BOINC resources.
We did however make a more reliable system as initial tests show.
We also examined the possibility of joining the public resources to the pool of Grid resources.
We found that doing this in a transparent way is quite difficult. One of the reasons for this
is the limitations set by many PRC platforms for the applications which they run. These
limitations are much stricter than the ones normally found for Grid jobs. After dealing with
the general problems, we made a design of a LCG-2 to BOINC bridge. We added functionality
to the BOINC server so it could support LCG-2’s job submission method. We believe that
the concept of a bridge from Grid to a PRC system is a good and realizable idea. However,
our design showed that BOINC is not ideally suited for such a bridge. The bridge would
either require a large knowledge of the BOINC system, simply making the bridge a second
submission system for BOINC, or it would require that some of the BOINC client’s security
features were removed. The first method would not live up to our criteria for a bridge. The
second would not likely gain widespread acceptance in the BOINC community.

81

7.1. FUTURE WORK

7.1 Future Work

The following areas are interesting and merit further research:

• The BOINC-LCG-2 bridge in a production environment

We were first ready to test our bridge from BOINC to LCG-2 when LHC@home had
shutdown for maintenance. It would therefore be interesting to test the bridge in a pro-
duction environment once LHC@home is running again. It would also be interesting to
let the bridge take advantage of the improvements that have been added to BOINC
during this period. For example, BOINC now supports prioritizing jobs. Letting the
bridge take advantage of this would improve the scheduling of jobs.

• QoS from Grid

Delivering QoS from Grid resources would greatly benefit the current user base as
well as increasing the applicability of the Grid concept. Applications with real-time
constraints would probably never be suited for the Grid due to the scheduling and data
transfer overheads. It would also allow a PRC to Grid Computing bridge to offer HSQs
from public resources, as mentioned in section 5.1. We therefore believe this is an area
worthy of further research.

• A new PRC platform

PRC platforms today are either aimed at intra institutional use, or they are made
specifically for one type of job. A new type of PRC platform that supports very general
jobs (like Condor), but is also usable in a truly public setting, would be an intriguing
prospect. Such a PRC platform would also alleviate our concerns for a Grid to BOINC
bridge.

82

Bibliography

[1] The Berkeley Open Infrastructure for Network Computing(BOINC) homepage
http://boinc.berkeley.edu/

[2] Remote Unix - Turning Idle Workstations Into Cycle Servers
Michael J. Litzkow - University of Wisconsin.

[3] Condor - A Distributed Job Scheduler
Todd Tannenbaum, Derek Wright, Karen Miller & Miron Livny - The MIT Press - 2002.

[4] The Condor Project homepage
http://www.cs.wisc.edu/condor/

[5] Condor Version 6.6.1 Manual
Condor Team, University of Wisconsin-Madison, February 12, 2004.

[6] Matchmaking: Distributed Resource Management for High Throughput Computing
Rajesh Raman, Miron Livny & Marvin Solomon - University of Wisconsin.

[7] Condor-G: A Computation Management Agent for Multi-Institutional Grids
James Frey, Todd Tannenbaum, Miron Livny, Ian Foster & Steven Tuecke.

[8] United Devices’ Homepage
http://www.ud.com/

[9] Entropia’s Homepage
http://www.entropia.com/

[10] Parabon’s Homepage
http://www.parabon.com

[11] Distributed.Net’s Homepage
http://distributed.net/

[12] MESH-Technologies’ Homepage
http://www.meshtechnologies.com/

[13] LHC@home’s Homepage
http://lhcathome.cern.ch/

[14] SETI@home Processing Efficiency - SETI Spy
http://www.cox-internet.com/setispy/efficiency.htm

83

BIBLIOGRAPHY

[15] Hunting for Wasted Computing Power - New Software for Computing Networks Puts
Idle PC’s to Work.
Scott Fields - University of Wisconson-Madison - 1993.

[16] Towards 100,000 CPU Cycle-Scavenging by Genetic Algorithms
Al Globus - NASA Ames Research Center - September 2001.

[17] What is the Grid? A Three Point Checklist
Ian Foster - Argonne National Laboratory & University of Chicago - July 20, 2002.

[18] The Anatomy of the Grid - Enabling Scalable Virtual Organizations.
Ian Foster, Carl Kesselman & Steven Tuecke.

[19] Grid Café
http://www.gridcafe.org/

[20] The Grid: Blueprint for a New Computing Infrastructure
Ian Foster & Carl Kesselman - Morgan Kaufmann - 1999.

[21] Analysis and Provision of QoS for Distributed Grid Applications
Rashid J. Al-Ali et al.
http://www.wesc.ac.uk/resources/publications/pdf/final-jogc.pdf

[22] The Globus Alliance Homepage
http://www.globus.org/

[23] EDG VMS API Documentation
http://www.to.infn.it/grid/workload management/apiDoc/edg-wms-api-index.html

[24] WS GRAM Developer’s Guide
http://www-unix.globus.org/toolkit/docs/3.2/gram/ws/developer/scheduler.html

[25] GridFTP - Universal Data Transfer for the Grid
The Globus Project - September 5, 2000.

[26] Getting started with the Globus Replica Catalog
http://www-fp.globus.org/datagrid/deliverables/replicaGettingStarted.pdf

[27] A Replica Management Service for High-Performance Data Grids
The Globus Data Management Group - January 29, 2001.

[28] Globus Toolkit 2.2: MDS Technology Brief
January 30, 2003.

[29] LCG-2 Middleware Overview
Simone Campana, Maarten Litmaath, Andrea Sciabà - October 1 2004.

[30] LCG-2 User Guide Manual Series
Antonio Delgado Peris et al. - September 7 2004.

[31] LCG-2 User Interface Manual Installation and Configuration
Antonio Retico, Alessandro Usai and Guillermo Diez-Andino - August 20 2004.

84

BIBLIOGRAPHY

[32] Creating services with hard guarantees from Cycle-Harvesting systems
Chris Kenyon and Giorgos Cheliotis - IBM Research Zurich - October 30 2002.

[33] The Lattice project’s Homepage
http://lattice.umiacs.umd.edu/

[34] Intercepting Arbitrary Functions on Windows, Linux and Macintosh OS X Platforms
Daniel S. Myers and Adam L. Basinet - UMIACS-TR-2004-28

[35] The coLinux Homepage
http://www.colinux.org/

[36] The TCPA FAQ
http://www.cl.cam.ac.uk/ rja14/tcpa-faq.html

[37] TCG’s Homepage
https://www.trustedcomputinggroup.org/home

85

Appendix A

Definitions

List of definitions for different terms and acronyms used in this thesis.

ADSL Asymmetric Digital Subscriber Line
AFS The Andrew File System
API Application Programming Interface
API Application Programming Interface
Application Represents a collection of related computation.
Application version A specific instance of the application. Consists of programs and

possibly data needed to process a result on a specific platform.
BDII Berkeley Database Information Index
BOINC Berkeley Open Infrastructure for Network Computing.
CAS Community Authorization Service
CE Computing Element
CERN Centre Européene pour le Recherche Nucléaire
CGI Common Gateway Interface
CGI Common Gateway Interface
CHF Swiss francs, the swiss unit of currency, worth about 0.7 of a Euro.
Condor A cycle-scavenging platform developed at the University of

Wisconsin-Madison.
CPSS Cern Physics ScreenSaver
CPU Central Processing Unit
CPU Central Processing Unit
DCGrid PRC platform from Entropia
DDoS Distributed Denial of Service
DIKU Datalogisk Institut Københavns Universitet(Department of Com-

puter Science, University of Copenhagen, Denmark)
DMS Data Management System
DNS Domain Name Service
EDG European Data Grid
EDG European Data Grid
FIFO First-In, First-Out
Frontier PRC platform from Parabon

86

FTP File Transfer Protocol
GASS Global Access to Secondary Storage
GIIS Grid Index Information Service
GLUE Grid Laboratory Uniform Environment
GRAM Globus Resource Allocation and Management
Grid MP PRC Platform from United Devices
GRIS Grid Resource Information Service
GSI Globus Security Infrastructure
GT The Globus Toolkit
HSQ Hard Stochastic QoS
HTTP HyperText Transfer Protocol. Mainly used on the world wide web

to transfer web pages
IP Information Provider
IS Information System
LCG-2 Large hadron collider Computing Grid version 2
LCG Large hadron collider Computing Grid
LDAP Lightweight Directory Access Protocol
LEP Large Electron and Positron collider
LFN Logical File Name
LHC Large Hadron Collider
Master URL Address where the master page resides which is where the clients

get the URL of the scheduling servers.
MDS Monitoring and Discovery Service
MPI Message Passing Interface
NAT Network Address Translation
OfficeGRID PRC from MESH-Technologies
OGSA Open Grid Services Architecture
OS Operating System
PFN Physical File Name
Platform A compilation target.
PRC Public Resource Computing. The concept of using donated cycles

from the public to do computations.
Project A group of distributed applications, run by a single organization.
PVM Parallel Virtual Machine
QoS Quality of Service
RAID Redundant Array of Independent Disks
RB Resource Broker
Remote Unix The Predecessor to Condor
Result An instance of a computation. Generated by BOINC from a

WorkUnit.
RLS Replica Location Service
RTF Reliable File Transfer

87

SCP Secure CoPy
SE Storage Element
SETI@home The largest PRC project in the world. Does analysis on radio sig-

nals.
SPEC Standard Performance Evaluation Corporation
SSH Secure SHell
SSL Secure Socket Layer
TeraFLOPS 1012 FLOPS
TGV Train Grand Vitesse
UDDI Universal Descrition, Discovery & Integration
UI User Interface
URL Uniform Resource Locator
VO Virtual Organization
WMS Workload Management System
WN Worker Node
WorkUnit(WU) Describes a computation to be performed
WSDL Web Services Description Language
XML eXtensible Markup Language

88

Appendix B

LHC@home

In this appendix we will present some statistics from the LHC@home server complex and
other relevant information on the LHC@home project.

B.1 Results and CPU-time

Total CPU time 212.0 years
Total Results 2524177
Total Successful results 1968084
Total CPU time(without redundant results) 61.6 years
Total CPU time(w/o redundant) contributed by Linux 3.4 years
Total WUs 615444
Total successful WUs 613099

B.2 Number of Hosts Divided by Operating System

The table below displays the number of hosts than runs a given operating system. Only hosts
that have received credits are taken into consideration. So hosts that have joined but never
done any calculations are not used. Neither are hosts that have only returned wrong results.

89

B.3. NUMBER OF USERS AND HOSTS OVER TIME

OS nb. of hosts total nb. of hosts

Microsoft Windows 2000 2946
Microsoft Windows 2003 409
Microsoft Windows 95 17
Microsoft Windows 98 653
Microsoft Windows Longhorn 1
Microsoft Windows Millennium 174
Microsoft Windows NT 175
Microsoft Windows XP 10030

Windows Total 14231

Linux 1210

Linux Total 1210

OpenBSD 2
FreeBSD 2
Darwin 82

Unix total 86

SunOS 8

Other Total 8

Total 15535

B.3 Number of Users and Hosts Over Time

Graph B.1 that shows the amount of users and hosts the LHC@home project got. The reason
for the steps-like appearance is that we had a limit on the amount of users. We would then
make sure that the server could handle the load before we allowed more users to register.

0

2000

4000

6000

8000

10000

12000

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06

time in seconds after start of project

Number of users and hosts for LHC@home over time

Hosts
Users

Figure B.1: The number of users and hosts donating to LHC@home

90

B.4. TIME TO FINISH A STUDY

B.4 Time to Finish a Study

The table below shows the groupings of the results for the study v64lhc1000proeight.
results (Windows) 149568
results (Linux) 10522
total results 160090
failed (Windows) 5766
failed (Linux) 1075
failed total 6841
no reply (Windows) 13447
no reply (Linux) 1094
no reply total 14541

B.5 SixTrack Screenshot

91

Appendix C

BOINC-Grid Bridge

Documentation

C.1 Installation Guide

For brave souls, who wants to attempt to install the BOINC-Grid bridge we include this
installation guide. The bridge has only been tested with version 4.03 of the BOINC server
complex so unexpected and unfortunate results may occur when trying to use it with other
versions of the server. The installation is a lengthy process and goes as follows:

1. Install the LCG-2 User Interface system on the BOINC server, where the bridge is
planned to run:

- Install all rpms from:
http://grid-deployment.web.cern.ch/grid-deployment/download/UI-rpm-LCG-2 2 0.html
except for the lcfg-rpms(their names contain ’lcfg’, ie. *lcfg*.rpm).

- Install the rpm ’vdt compile globus core-VDT1.1.14-4.i386.rpm’ containing a libtool
compatible with LCG-2. The package can be found at
/afs/cern.ch/project/gd/RpmDir/vdt/globus/ but probably also other places for
people without access to CERN’s AFS filesystem.

- Configure the User Interface on the BOINC server according to chapter 4 and 7 of
[31] found at
http://grid- deployment.web.cern.ch/grid-deployment/gis/release-docs/LCG-2 2 0/UI/UI.pdf.

- Obtain and install a certificate for LCG-2 as describe in [30] found at
https://edms.cern.ch/file/454439//LCG-2-UserGuide.pdf.

- Test the UI by running a very simple grid job, possibly a job returning the host
name of the WN. If it does not work contact people from the LCG-2.

2. Configure the server environment:

- If not already present install GCC 3.2.3.

- Run export LD LIBRARY PATH=/!GCC 3.2.3 install-dir!/lib:$LD LIBRARY PATH

replacing !GCC 3.2.2 install-dir with the local directory containing GCC 3.2.3.

92

C.1. INSTALLATION GUIDE

- Run export PATH=/!GCC 3.3.2 install-dir!/bin:$PATH also replacing !GCC

3.2.3 install-dir! with the appropriate directory.

- Run export X509 USER PROXY=/!proxy-dir!/!proxy-file! replacing !proxy-dir!
with the directory, where you prefer to keep the LCG-2 proxy-certificate and re-
placing !proxy-file! with the filename of the file, where you prefer to store the
proxy-certificate.

- Possibly add the last three commands to the startup script of the user supposed
to run the bridge, i.e. probably the .bashrc script.

3. Install and make the bridge:

- Download the bridge from:
http://www.fatbat.dk/thesis/bridge.tar.gz.

- Make backup copies of the following files, possibly just renaming them:

- !boinc-dir!/client/client state.C

- !boinc-dir!/client/Makefile

- !boinc-dir!/db/boinc db.C

- !boinc-dir!/db/boinc db.h

- !boinc-dir!/sched/sched config.h

- !boinc-dir!/sched/sched config.C

- !boinc-dir!/tools/create work.C

, where !boinc-dir! denotes the directory containing the BOINC source code.
This is very IMPORTANT since the bridge contains its own version of these files,
which overwrites the standard BOINC files.

- Copy the bridge.tar.gz file to the !boinc-dir! or move it there.

- Run tar -xzf bridge.tar.gz from !boinc-dir! to extract the source code of the
bridge.

- Create a directory called ’grid’ in the project directory, i.e the directory containing
the config.xml for your project.

- Create another directory called ’bin’ in the ’grid’ directory you just created.

- Either copy the modified client ’boinc client.gz’ supplied with the bridge to the
previously created ’bin’ directory or run make in the !boinc-dir!/client/ directory
to make your own. If you choose the last option, which is not recommended, you
have to gzip the newly made client, copy or move it to the ’bin’ directory and you
must name it ’boinc client.gz’.

- Adapt the file ’Makebridge’ in the !boinc-dir!/sched/ directory to fit your environ-
ment including changing the line ’cp bridge /lhcathome/projects/lhcathome/bin/’
to point to the ’bin’ directory of your project, i.e. the directory containing the
projects transitioner, validator, assimilator etc. This directory it not to be con-
fused with the previously mentioned ’bin’ directory under the ’grid’ directory.

- Run the script ’buildbridge’ or run make -f Makebridge both from the !boinc-
dir!/sched/ directory to build the bridge and copy it to the project’s ’bin’ directory.

- Run make from the ’tools’ directory under !boinc-dir! to make the bridge-enabled
version of ’create work’.

93

C.1. INSTALLATION GUIDE

- Copy or move the newly made ’create work’ to your project directory replacing
the non-bridge-enabled version. For safety reasons you could make a backup of the
old ’create work’.

4. Extend the database to support the bridge:

- Run mysql !project-database! < !boinc-dir!/sched/bridge schema.sql re-
placing !project-database! with the name of the database holding your projects
data and !boinc-dir! with the name of the directory containing the BOINC
source code.

5. Enable and configure the bridge:

- Add <daemon> <cmd>bridge -d !logging level!</cmd> </daemon> to the dea-
mons section in the config.xml file of the BOINC project replacing !logging

level! with either 1,2 or 3 for logging of critical events only, normal logging,
or debug logging respectively.

- Configure the bridge according to 5.3.7 by setting the following attributes under
the config section of the config.xml file:

<VO>

!VO name!

</VO>

<grid fpops>

!estimated FLOPS on the average grid machine!

</grid fpops>

<NS hostname>

!network server host name!

</NS hostname>

<NS port>

!network server port number! - only needs to be set if default

(7772) is not right.

</NS port>

<LB hostname>

!Logging and Bookkeeping service server name!

</LB hostname>

<LB port>

!LB server port number! - only needs to be set if default (9000)

is not right.

</LB port>

<bridge loop interval>

!loop interval!

</bridge loop interval>

<grid retries>

!number of retries on the grid!

94

C.2. USER MANUAL

</grid retries>

If all goes well the bridge should be installed by now. If all does not go well send an email to
’jakob@stonefire.dk’ and hopefully we will be able to fix it.

C.2 User Manual

Using the bridge is quite simple, however for it to work a valid proxy-certificate for LCG-2
must be available. This is created by running the command grid-proxy-init -valid H:M

replacing H:M with the hours and minutes of wanted validity respectively. Since the proxy-
certificate expires it must be periodically renewed for the bridge to function.
To create QoS-enabled WorkUnits a switch must be added to the commandline when calling
the bridge-enabled ’create work’ or if a project-specific work-generator program is used it must
follow the implementation of the bridge-enabled ’create work’. The switch is -finish before

!deadline! where !deadline! is the desired deadline of the WU in UNIX-time.
The server administrator is encouraged to check the log file located in the log directory
(!projectdir!/log !servername!/bridge.log) periodically and as a tool for troubleshooting.

95

Appendix D

Sourcecode

All sourcecode for the thesis, along with explanations, can be found at:

http://www.fatbat.dk/thesis/

96

